File size: 10,799 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
10e9b7d
94d721f
9fcfed4
f25aa32
 
 
 
 
c67ab4a
d59f015
e80aab9
3db6293
e80aab9
31243f4
d59f015
84e9a29
94d721f
 
 
 
84e9a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d721f
 
 
 
84e9a29
 
 
 
 
 
 
 
31243f4
 
c9d0d89
86d3e53
94d721f
 
86d3e53
 
94d721f
86d3e53
c9d0d89
86d3e53
 
 
 
c9d0d89
86d3e53
 
 
 
 
 
c9d0d89
86d3e53
31243f4
884668a
 
 
c9d0d89
 
 
884668a
 
 
 
c9d0d89
 
 
884668a
 
 
4021bf3
b90251f
31243f4
 
 
 
84e9a29
 
 
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
884668a
31243f4
a0d7aea
31243f4
 
 
a0d7aea
31243f4
 
a0d7aea
11c8a48
7d65c66
 
884668a
31243f4
884668a
7d65c66
31243f4
884668a
a0d7aea
 
 
e572948
31243f4
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
60318b2
 
e514fd7
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import gradio as gr
import requests
import inspect
import pandas as pd

from huggingface_hub import hf_hub_download, login

from smolagents import CodeAgent
from smolagents import OpenAIServerModel
from smolagents import Tool
from smolagents import PythonInterpreterTool
from smolagents import DuckDuckGoSearchTool

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------

# Global variables
HF_DATASET_TOKEN = os.getenv("HF_DATASET_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# GAIA Dataset file dowloading
"""
    Basic function to download a GAIA dataset validation file
"""
def get_GAIA_dataset_validation_file(file_name: str):
    response = hf_hub_download(
        repo_id="gaia-benchmark/GAIA", 
        filename= f"2023/validation/{file_name}", 
        repo_type="dataset"
    )
    return response

"""
    Basic function to download a GAIA dataset test file
"""
def get_GAIA_dataset_test_file(file_name: str):
    response = hf_hub_download(
        repo_id="gaia-benchmark/GAIA", 
        filename= f"2023/test/{file_name}", 
        repo_type="dataset"
    )
    return response

"""
    Basic function to download a GAIA dataset file (validation attempted first)
"""
def get_GAIA_dataset_file(file_name: str):
    
    global HF_DATASET_TOKEN
    login(token = HF_DATASET_TOKEN)
    
    response = None
    try:
        response = get_GAIA_dataset_validation_file(file_name)
    except:
        response = get_GAIA_dataset_test_file(file_name)
            
    return response

class BasicAgent:
    def __init__(self):
        print("Starting the initialization of model.")
        
        global OPENAI_API_KEY
        
        model = OpenAIServerModel(
            model_id="gpt-4o-mini-2024-07-18",
            api_key = OPENAI_API_KEY 
        )
        print("Core model has been initialized.")
        
        self.tools = [
            DuckDuckGoSearchTool()
        ]
        print("Agent tools have been initialized.")

        self.agent = CodeAgent(
            model = model,
            tools = self.tools,
            add_base_tools=True  # Add basic tools like math
        )
        print("Core agent has been initialized.")

    def __call__(self, question: str) -> str:
        print("#"*20)
        print(f"ℹ️ Agent received question: {question}")
        print("#"*20)
        try:
            # send the question content to the agent
            answer = self.agent.run(question)
            print("#"*20)
            print(f"✅ Agent returning the answer: {answer}")
            print("#"*20)
            
            # return the answer
            return answer
        except Exception as e:
            print("!"*20)
            print(f"❗Error running agent {str(e)}")
            print("!"*20)

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    print("!!!!!!!!!!!!! HANDLING DATASET FILE")
    response = get_GAIA_dataset_file("076c8171-9b3b-49b9-a477-244d2a532826.xlsx")
    print(response)

    return
    
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    question_index = 1
    for item in questions_data:
        print(f"ℹ️ Handling question #: {question_index}")
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"⚠️Skipping item with missing task_id or question: {item}")
            continue
        try:
            #submitted_answer = agent(question_text)
            submitted_answer = "Placeholder"
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            print(f"✅ Successful handling of question #: {question_index}")
        except Exception as e:
             print(f"❌ Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

        question_index = question_index + 1

    # REMOVE: prevent payload submission!!!
    return
    
    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        # HuggingFace agents course - final assignement implementation.
        An OPEN AI key will be needed to run this assignment.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)