Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from gradio import ChatMessage
|
4 |
+
import requests
|
5 |
+
from typing import Dict, List
|
6 |
+
from langchain_core.messages import HumanMessage
|
7 |
+
from langchain_core.tools import tool
|
8 |
+
from langchain_openai import ChatOpenAI
|
9 |
+
from langgraph.checkpoint.memory import MemorySaver
|
10 |
+
from langgraph.prebuilt import create_react_agent
|
11 |
+
|
12 |
+
# Weather and location tools
|
13 |
+
@tool
|
14 |
+
def get_lat_lng(location_description: str) -> dict[str, float]:
|
15 |
+
"""Get the latitude and longitude of a location."""
|
16 |
+
return {"lat": 51.1, "lng": -0.1} # London coordinates as dummy response
|
17 |
+
|
18 |
+
@tool
|
19 |
+
def get_weather(lat: float, lng: float) -> dict[str, str]:
|
20 |
+
"""Get the weather at a location."""
|
21 |
+
return {"temperature": "21°C", "description": "Sunny"} # Dummy response
|
22 |
+
|
23 |
+
|
24 |
+
def stream_from_agent(message: str, history: List[Dict[str, str]]) -> gr.ChatMessage:
|
25 |
+
"""Process messages through the LangChain agent with visible reasoning."""
|
26 |
+
|
27 |
+
# Initialize the agent
|
28 |
+
llm = ChatOpenAI(temperature=0, model="gpt-4")
|
29 |
+
memory = MemorySaver()
|
30 |
+
tools = [get_lat_lng, get_weather]
|
31 |
+
agent_executor = create_react_agent(llm, tools, checkpointer=memory)
|
32 |
+
|
33 |
+
# Add message to history
|
34 |
+
past_messages = [HumanMessage(content=message)]
|
35 |
+
for h in history:
|
36 |
+
if h["role"] == "user":
|
37 |
+
past_messages.append(HumanMessage(content=h["content"]))
|
38 |
+
|
39 |
+
messages_to_display = []
|
40 |
+
final_response = None
|
41 |
+
|
42 |
+
for chunk in agent_executor.stream(
|
43 |
+
{"messages": past_messages},
|
44 |
+
config={"configurable": {"thread_id": "abc123"}}
|
45 |
+
):
|
46 |
+
# Handle agent's actions and tool usage
|
47 |
+
if chunk.get("agent"):
|
48 |
+
for msg in chunk["agent"]["messages"]:
|
49 |
+
if msg.content:
|
50 |
+
final_response = msg.content
|
51 |
+
|
52 |
+
# Handle tool calls
|
53 |
+
for tool_call in msg.tool_calls:
|
54 |
+
tool_message = ChatMessage(
|
55 |
+
content=f"Parameters: {tool_call['args']}",
|
56 |
+
metadata={
|
57 |
+
"title": f"🛠️ Using {tool_call['name']}",
|
58 |
+
"id": tool_call["id"],
|
59 |
+
}
|
60 |
+
)
|
61 |
+
messages_to_display.append(tool_message)
|
62 |
+
yield messages_to_display
|
63 |
+
|
64 |
+
# Handle tool responses
|
65 |
+
if chunk.get("tools"):
|
66 |
+
for tool_response in chunk["tools"]["messages"]:
|
67 |
+
# Find the corresponding tool message
|
68 |
+
for msg in messages_to_display:
|
69 |
+
if msg.metadata.get("id") == tool_response.tool_call_id:
|
70 |
+
msg.content += f"\nResult: {tool_response.content}"
|
71 |
+
yield messages_to_display
|
72 |
+
|
73 |
+
# Add the final response as a regular message
|
74 |
+
if final_response:
|
75 |
+
messages_to_display.append(ChatMessage(content=final_response))
|
76 |
+
yield messages_to_display
|
77 |
+
|
78 |
+
# Create the Gradio interface
|
79 |
+
demo = gr.ChatInterface(
|
80 |
+
fn=stream_from_agent,
|
81 |
+
type="messages",
|
82 |
+
title="🌤️ Weather Assistant",
|
83 |
+
description="Ask about the weather anywhere! Watch as I gather the information step by step.",
|
84 |
+
examples=[
|
85 |
+
"What's the weather like in Tokyo?",
|
86 |
+
"Is it sunny in Paris right now?",
|
87 |
+
"Should I bring an umbrella in New York today?"
|
88 |
+
],
|
89 |
+
|
90 |
+
)
|
91 |
+
|
92 |
+
demo.launch()
|