Update app.py
Browse files
app.py
CHANGED
@@ -2,452 +2,199 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect # To get source code for __repr__
|
5 |
-
import
|
6 |
-
from typing import Dict, List, AsyncGenerator, Union, Tuple, Optional
|
7 |
-
|
8 |
-
# --- LangChain Specific Imports ---
|
9 |
-
from langchain_core.messages import HumanMessage, AIMessage, BaseMessage
|
10 |
-
from langchain_core.tools import tool
|
11 |
-
from langchain_openai import ChatOpenAI
|
12 |
-
from langgraph.checkpoint.memory import MemorySaver
|
13 |
-
from langgraph.prebuilt import create_react_agent
|
14 |
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "http://127.0.0.1:8000" # Default URL for your FastAPI app
|
17 |
|
18 |
-
# ---
|
19 |
-
@tool
|
20 |
-
def get_lat_lng(location_description: str) -> dict[str, float]:
|
21 |
-
"""Get the latitude and longitude of a location."""
|
22 |
-
print(f"Tool: Getting lat/lng for {location_description}")
|
23 |
-
# Replace with actual API call in a real app
|
24 |
-
if "tokyo" in location_description.lower():
|
25 |
-
return {"lat": 35.6895, "lng": 139.6917}
|
26 |
-
elif "paris" in location_description.lower():
|
27 |
-
return {"lat": 48.8566, "lng": 2.3522}
|
28 |
-
elif "new york" in location_description.lower():
|
29 |
-
return {"lat": 40.7128, "lng": -74.0060}
|
30 |
-
else:
|
31 |
-
return {"lat": 51.5072, "lng": -0.1276} # Default London
|
32 |
-
|
33 |
-
@tool
|
34 |
-
def get_weather(lat: float, lng: float) -> dict[str, str]:
|
35 |
-
"""Get the weather at a location."""
|
36 |
-
print(f"Tool: Getting weather for lat={lat}, lng={lng}")
|
37 |
-
# Replace with actual API call in a real app
|
38 |
-
if lat > 45: # Northern locations
|
39 |
-
return {"temperature": "15°C", "description": "Cloudy"}
|
40 |
-
elif lat > 30: # Mid locations
|
41 |
-
return {"temperature": "25°C", "description": "Sunny"}
|
42 |
-
else: # Southern locations
|
43 |
-
return {"temperature": "30°C", "description": "Very Sunny"}
|
44 |
|
45 |
-
|
46 |
-
class MyLangChainAgent:
|
47 |
"""
|
48 |
-
A
|
49 |
-
|
50 |
-
correctly answer GAIA benchmark questions. This class structure
|
51 |
-
demonstrates how to integrate an agent with the submission API.
|
52 |
-
Replace LLM, tools, and potentially the agent type for actual GAIA tasks.
|
53 |
"""
|
54 |
-
def __init__(self
|
55 |
-
|
56 |
-
if
|
57 |
-
raise ValueError("OPENAI_API_KEY environment variable not set.")
|
58 |
-
|
59 |
-
self.llm = ChatOpenAI(temperature=temperature, model=model_name)
|
60 |
-
self.tools = [get_lat_lng, get_weather] # Use the globally defined tools
|
61 |
-
self.memory = MemorySaver()
|
62 |
-
# Create the agent executor
|
63 |
-
self.agent_executor = create_react_agent(self.llm, self.tools, checkpointer=self.memory)
|
64 |
-
print("MyLangChainAgent initialized.")
|
65 |
|
66 |
-
|
67 |
"""
|
68 |
-
|
69 |
-
|
70 |
-
Args:
|
71 |
-
question: The input question string.
|
72 |
-
thread_id: A unique identifier for the conversation thread.
|
73 |
-
|
74 |
-
Yields:
|
75 |
-
Intermediate steps (tool calls/results) as strings or dicts.
|
76 |
-
|
77 |
-
Returns:
|
78 |
-
The final AI answer as a string.
|
79 |
"""
|
80 |
-
print(f"Agent
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
async for chunk in self.agent_executor.astream_events(
|
86 |
-
{"messages": lc_messages},
|
87 |
-
config={"configurable": {"thread_id": thread_id}},
|
88 |
-
version="v1"
|
89 |
-
):
|
90 |
-
event = chunk["event"]
|
91 |
-
data = chunk["data"]
|
92 |
-
# print(f"DEBUG: Event: {event}, Data Keys: {data.keys()}") # Debugging line
|
93 |
-
|
94 |
-
if event == "on_chat_model_stream":
|
95 |
-
content = data["chunk"].content
|
96 |
-
if content:
|
97 |
-
# print(f"DEBUG: AI Chunk: {content}") # Debugging line
|
98 |
-
full_response_content += content
|
99 |
-
# Yield potentially incomplete response for live typing effect if needed
|
100 |
-
# yield {"type": "stream", "content": content }
|
101 |
-
|
102 |
-
elif event == "on_tool_start":
|
103 |
-
tool_input_str = str(data.get('input', ''))
|
104 |
-
yield f"🛠️ Using tool: **{data['name']}** with input: `{tool_input_str}`"
|
105 |
-
|
106 |
-
elif event == "on_tool_end":
|
107 |
-
tool_output_str = str(data.get('output', ''))
|
108 |
-
yield f"✅ Tool **{data['name']}** finished.\nResult: `{tool_output_str}`"
|
109 |
-
|
110 |
-
# Detect the end of the conversation turn (heuristic)
|
111 |
-
# The 'on_chain_end' event for the top-level graph might signal the end.
|
112 |
-
# Or check the 'messages' list in the final state if available.
|
113 |
-
# For create_react_agent, the final AIMessage is often the last main event.
|
114 |
-
# We will capture the last full AI message content after the loop.
|
115 |
-
|
116 |
-
# After iterating through all chunks, the final answer should be in full_response_content
|
117 |
-
final_answer = full_response_content.strip()
|
118 |
-
print(f"Agent execution finished. Final Answer: {final_answer[:100]}...")
|
119 |
-
# Yield the complete final answer distinctly if needed
|
120 |
-
# yield {"type": "final_answer_marker", "content": final_answer} # Example marker
|
121 |
-
return final_answer # Return the final answer
|
122 |
|
123 |
def __repr__(self) -> str:
|
124 |
"""
|
125 |
-
Return the source code required to reconstruct this agent
|
126 |
-
the class definition, tool functions, and necessary imports.
|
127 |
"""
|
128 |
imports = [
|
129 |
-
"import
|
130 |
-
"from typing import Dict, List, AsyncGenerator, Union, Tuple, Optional",
|
131 |
-
"from langchain_core.messages import HumanMessage, AIMessage, BaseMessage",
|
132 |
-
"from langchain_core.tools import tool",
|
133 |
-
"from langchain_openai import ChatOpenAI",
|
134 |
-
"from langgraph.checkpoint.memory import MemorySaver",
|
135 |
-
"from langgraph.prebuilt import create_react_agent",
|
136 |
-
"import inspect", # Needed if repr itself uses inspect dynamically
|
137 |
-
"import asyncio", # Needed for async call
|
138 |
-
"\n"
|
139 |
]
|
140 |
-
|
141 |
-
|
142 |
-
for t in self.tools:
|
143 |
-
try:
|
144 |
-
tool_sources.append(inspect.getsource(t))
|
145 |
-
except (TypeError, OSError) as e:
|
146 |
-
print(f"Warning: Could not get source for tool {t.__name__}: {e}")
|
147 |
-
tool_sources.append(f"# Could not automatically get source for tool: {t.__name__}\n")
|
148 |
-
|
149 |
-
# Get source code of the class itself
|
150 |
-
class_source = inspect.getsource(MyLangChainAgent)
|
151 |
-
|
152 |
-
# Combine imports, tools, and class definition
|
153 |
-
full_source = "\n".join(imports) + "\n\n" + \
|
154 |
-
"\n\n".join(tool_sources) + "\n\n" + \
|
155 |
-
class_source
|
156 |
return full_source
|
157 |
|
158 |
-
|
159 |
# --- Gradio UI and Logic ---
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
# We want List[Tuple[user_msg | None, ai_msg | None]] for Chatbot
|
174 |
-
formatted = []
|
175 |
-
for turn in history:
|
176 |
-
formatted.append(tuple(turn))
|
177 |
-
return formatted
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
"
|
182 |
-
if not api_url:
|
183 |
-
return "Please enter the API URL.", "", "", gr.update(value=""), gr.update(value="") # Clear chat too
|
184 |
-
|
185 |
-
question_url = f"{api_url.strip('/')}/random-question"
|
186 |
-
print(f"Fetching question from: {question_url}")
|
187 |
try:
|
188 |
-
response = requests.get(
|
189 |
-
response.raise_for_status()
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
return "Question fetched successfully!", task_id, question_text, "", [] # Clears answer and chat history
|
197 |
-
else:
|
198 |
-
return "Error: Invalid data format received from API.", "", "", "", []
|
199 |
except requests.exceptions.RequestException as e:
|
200 |
-
print(f"Error fetching
|
201 |
-
return f"Error fetching
|
202 |
except Exception as e:
|
203 |
-
print(f"An unexpected error occurred: {e}")
|
204 |
-
return f"An unexpected error occurred: {e}",
|
205 |
-
|
206 |
-
|
207 |
-
async def run_agent_interaction(
|
208 |
-
message: str,
|
209 |
-
history: List[List[Optional[str]]],
|
210 |
-
current_task_id: str,
|
211 |
-
# agent_instance: MyLangChainAgent # Agent passed via state potentially
|
212 |
-
):
|
213 |
-
"""Handles the chat interaction, runs the agent, yields steps, updates final answer state."""
|
214 |
-
if agent_instance is None:
|
215 |
-
yield "Agent not initialized. Please check API keys and restart."
|
216 |
-
return
|
217 |
-
|
218 |
-
if not current_task_id:
|
219 |
-
yield "Please fetch a question first using the button above."
|
220 |
-
return
|
221 |
-
|
222 |
-
# The 'message' here is the user's latest input in the chat.
|
223 |
-
# For this workflow, we assume the main input is the fetched question.
|
224 |
-
# We'll use the fetched question (implicitly stored) to run the agent.
|
225 |
-
# If you want interactive chat *about* the question, the logic needs adjustment.
|
226 |
-
|
227 |
-
# For simplicity, let's assume the user's message *is* the question or a prompt related to it.
|
228 |
-
# In the GAIA context, usually, the agent just runs on the provided question directly.
|
229 |
-
# We'll use the `current_task_id` to generate a unique thread_id for LangGraph memory.
|
230 |
-
thread_id = f"gaia_task_{current_task_id}_{os.urandom(4).hex()}"
|
231 |
-
|
232 |
-
print(f"Running agent for user message: {message[:50]}...")
|
233 |
-
history.append([message, None]) # Add user message to history
|
234 |
-
|
235 |
-
final_agent_answer = None
|
236 |
-
full_yielded_response = ""
|
237 |
-
|
238 |
-
# Use the agent's __call__ method
|
239 |
-
async for step in agent_instance(message, thread_id=thread_id):
|
240 |
-
if isinstance(step, str):
|
241 |
-
# Intermediate step (tool call, result, maybe stream chunk)
|
242 |
-
history[-1][1] = step # Update the AI's response in the last turn
|
243 |
-
yield format_chat_history(history) # Update chatbot UI
|
244 |
-
full_yielded_response = step # Track last yielded message
|
245 |
-
# If __call__ yielded dicts for streaming, handle here:
|
246 |
-
# elif isinstance(step, dict) and step.get("type") == "stream":
|
247 |
-
# history[-1][1] = (history[-1][1] or "") + step["content"]
|
248 |
-
# yield format_chat_history(history)
|
249 |
-
|
250 |
-
# After the loop, the `step` variable holds the return value (final answer)
|
251 |
-
final_agent_answer = step
|
252 |
-
print(f"Agent final answer received: {final_agent_answer[:100]}...")
|
253 |
-
|
254 |
-
# Update the history with the definitive final answer
|
255 |
-
if final_agent_answer:
|
256 |
-
history[-1][1] = final_agent_answer # Replace intermediate steps with final one
|
257 |
-
elif full_yielded_response:
|
258 |
-
# Fallback if final answer wasn't returned correctly but we yielded something
|
259 |
-
history[-1][1] = full_yielded_response
|
260 |
-
final_agent_answer = full_yielded_response # Use the last yielded message as answer
|
261 |
-
else:
|
262 |
-
history[-1][1] = "Agent did not produce a final answer."
|
263 |
-
final_agent_answer = "" # Ensure it's a string
|
264 |
-
|
265 |
-
# Yield the final state of the history and update the hidden state for the final answer
|
266 |
-
yield format_chat_history(history), final_agent_answer
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
task_id: str,
|
273 |
-
agent_answer: str,
|
274 |
-
# agent_instance: MyLangChainAgent # Pass agent via state if needed
|
275 |
-
):
|
276 |
-
"""Submits the agent's answer and code to the FastAPI backend."""
|
277 |
-
if agent_instance is None:
|
278 |
-
return "Agent not initialized. Cannot submit."
|
279 |
-
if not api_url:
|
280 |
-
return "Please enter the API URL."
|
281 |
-
if not username:
|
282 |
-
return "Please enter your Hugging Face username."
|
283 |
-
if not task_id:
|
284 |
-
return "No task ID available. Please fetch a question first."
|
285 |
-
if agent_answer is None or agent_answer.strip() == "": # Check if None or empty
|
286 |
-
# Maybe allow submission of empty answer? Depends on requirements.
|
287 |
-
print("Warning: Submitting empty answer.")
|
288 |
-
# return "Agent has not provided an answer yet."
|
289 |
-
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
submission_data = {
|
304 |
"username": username.strip(),
|
305 |
"agent_code": agent_code,
|
306 |
-
"answers":
|
307 |
-
{
|
308 |
-
"task_id": task_id,
|
309 |
-
"submitted_answer": agent_answer # Use the stored final answer
|
310 |
-
}
|
311 |
-
# Add more answers here if submitting a batch
|
312 |
-
]
|
313 |
}
|
|
|
|
|
314 |
|
|
|
|
|
315 |
try:
|
316 |
-
response = requests.post(submit_url, json=submission_data, timeout=
|
317 |
response.raise_for_status()
|
318 |
result_data = response.json()
|
319 |
-
|
320 |
-
|
|
|
321 |
f"Submission Successful!\n"
|
322 |
f"User: {result_data.get('username')}\n"
|
323 |
-
f"Score: {result_data.get('score')}
|
324 |
-
f"
|
325 |
-
f"Message: {result_data.get('message')}
|
326 |
-
f"Timestamp: {result_data.get('timestamp')}"
|
327 |
)
|
328 |
print("Submission successful.")
|
329 |
-
|
|
|
|
|
330 |
except requests.exceptions.HTTPError as e:
|
331 |
-
# Try to get detail from response body if available
|
332 |
error_detail = e.response.text
|
333 |
try:
|
334 |
error_json = e.response.json()
|
335 |
error_detail = error_json.get('detail', error_detail)
|
336 |
except requests.exceptions.JSONDecodeError:
|
337 |
-
pass
|
338 |
-
|
339 |
-
|
|
|
|
|
340 |
except requests.exceptions.RequestException as e:
|
341 |
-
|
342 |
-
|
|
|
|
|
343 |
except Exception as e:
|
344 |
-
|
345 |
-
|
|
|
|
|
346 |
|
347 |
|
348 |
# --- Build Gradio Interface using Blocks ---
|
349 |
with gr.Blocks() as demo:
|
350 |
-
gr.Markdown("# Agent Evaluation
|
351 |
gr.Markdown(
|
352 |
-
"
|
353 |
-
"
|
354 |
-
"
|
355 |
)
|
356 |
|
357 |
-
# --- State Variables ---
|
358 |
-
# Store current task info, agent's final answer, and the agent instance
|
359 |
-
current_task_id = gr.State("")
|
360 |
-
current_question_text = gr.State("")
|
361 |
-
current_agent_answer = gr.State("") # Stores the final answer string from the agent
|
362 |
-
# agent_state = gr.State(agent_instance) # Pass agent instance via state
|
363 |
-
|
364 |
with gr.Row():
|
365 |
api_url_input = gr.Textbox(label="FastAPI API URL", value=DEFAULT_API_URL)
|
366 |
hf_username_input = gr.Textbox(label="Hugging Face Username")
|
367 |
|
368 |
-
|
369 |
-
fetch_button = gr.Button("Get Random Question")
|
370 |
-
submission_status_display = gr.Textbox(label="Status", interactive=False) # For fetch status
|
371 |
-
|
372 |
-
with gr.Row():
|
373 |
-
question_display = gr.Textbox(label="Current Question", lines=3, interactive=False)
|
374 |
|
375 |
-
gr.
|
376 |
-
gr.
|
377 |
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
gr.Markdown("---")
|
385 |
-
gr.Markdown("## Submission")
|
386 |
-
with gr.Row():
|
387 |
-
submit_button = gr.Button("Submit Current Answer to Leaderboard")
|
388 |
-
|
389 |
-
submission_result_display = gr.Markdown(label="Submission Result", value="*Submit an answer to see the result here.*") # Use Markdown for better formatting
|
390 |
-
|
391 |
-
|
392 |
-
# --- Component Interactions ---
|
393 |
-
|
394 |
-
# Fetch Button Action
|
395 |
-
fetch_button.click(
|
396 |
-
fn=fetch_and_display_question,
|
397 |
-
inputs=[api_url_input],
|
398 |
-
outputs=[
|
399 |
-
submission_status_display, # Shows fetch status
|
400 |
-
current_task_id, # Updates hidden state
|
401 |
-
question_display, # Updates question text box
|
402 |
-
final_answer_display, # Clears old final answer
|
403 |
-
chatbot # Clears chat history
|
404 |
-
]
|
405 |
)
|
406 |
|
407 |
-
# Chat Submission Action (when user sends message in chat)
|
408 |
-
msg_input.submit(
|
409 |
-
fn=run_agent_interaction,
|
410 |
-
inputs=[
|
411 |
-
msg_input, # User message from chat input
|
412 |
-
chatbot, # Current chat history
|
413 |
-
current_task_id, # Current task ID from state
|
414 |
-
# agent_state # Pass agent instance state
|
415 |
-
],
|
416 |
-
outputs=[
|
417 |
-
chatbot, # Updated chat history
|
418 |
-
current_agent_answer # Update the hidden state holding the final answer
|
419 |
-
]
|
420 |
-
).then(
|
421 |
-
# After agent runs, update the visible "Final Answer" box from the state
|
422 |
-
lambda answer_state: answer_state,
|
423 |
-
inputs=[current_agent_answer],
|
424 |
-
outputs=[final_answer_display]
|
425 |
-
)
|
426 |
-
|
427 |
-
# Clear message input after submission
|
428 |
-
msg_input.submit(lambda: "", None, msg_input, queue=False)
|
429 |
-
|
430 |
-
|
431 |
-
# Submit Button Action
|
432 |
-
submit_button.click(
|
433 |
-
fn=submit_to_leaderboard,
|
434 |
-
inputs=[
|
435 |
-
api_url_input,
|
436 |
-
hf_username_input,
|
437 |
-
current_task_id,
|
438 |
-
current_agent_answer, # Use the stored final answer state
|
439 |
-
# agent_state # Pass agent instance state
|
440 |
-
],
|
441 |
-
outputs=[submission_result_display] # Display result message
|
442 |
-
)
|
443 |
-
|
444 |
-
|
445 |
if __name__ == "__main__":
|
446 |
-
|
447 |
-
|
448 |
-
print("Please ensure OPENAI_API_KEY is set and valid.\n")
|
449 |
-
# Optionally exit here if agent is critical
|
450 |
-
# exit(1)
|
451 |
-
else:
|
452 |
-
print("Launching Gradio Interface...")
|
453 |
-
demo.launch(debug=True, server_name="0.0.0.0") # Share=False by default for security
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect # To get source code for __repr__
|
5 |
+
import pandas as pd # For displaying results in a table
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# --- Constants ---
|
8 |
DEFAULT_API_URL = "http://127.0.0.1:8000" # Default URL for your FastAPI app
|
9 |
|
10 |
+
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
class BasicAgent:
|
|
|
13 |
"""
|
14 |
+
A very simple agent placeholder.
|
15 |
+
It just returns a fixed string for any question.
|
|
|
|
|
|
|
16 |
"""
|
17 |
+
def __init__(self):
|
18 |
+
print("BasicAgent initialized.")
|
19 |
+
# Add any setup if needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def __call__(self, question: str) -> str:
|
22 |
"""
|
23 |
+
The agent's logic to answer a question.
|
24 |
+
This basic version ignores the question content.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"""
|
26 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
27 |
+
# Replace this with actual logic if you were building a real agent
|
28 |
+
fixed_answer = "This is a default answer."
|
29 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
30 |
+
return fixed_answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def __repr__(self) -> str:
|
33 |
"""
|
34 |
+
Return the source code required to reconstruct this agent.
|
|
|
35 |
"""
|
36 |
imports = [
|
37 |
+
"import inspect\n" # May not be strictly needed by the agent logic itself
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
]
|
39 |
+
class_source = inspect.getsource(BasicAgent)
|
40 |
+
full_source = "\n".join(imports) + "\n" + class_source
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
return full_source
|
42 |
|
|
|
43 |
# --- Gradio UI and Logic ---
|
44 |
|
45 |
+
def run_and_submit_all(api_url: str, username: str):
|
46 |
+
"""
|
47 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
48 |
+
and displays the results.
|
49 |
+
"""
|
50 |
+
if not api_url:
|
51 |
+
return "Please enter the API URL.", None # Status, DataFrame
|
52 |
+
if not username:
|
53 |
+
return "Please enter your Hugging Face username.", None # Status, DataFrame
|
54 |
|
55 |
+
api_url = api_url.strip('/')
|
56 |
+
questions_url = f"{api_url}/questions"
|
57 |
+
submit_url = f"{api_url}/submit"
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# 1. Instantiate the Agent
|
60 |
+
try:
|
61 |
+
agent = BasicAgent()
|
62 |
+
agent_code = agent.__repr__()
|
63 |
+
# print(f"Agent Code (first 200): {agent_code[:200]}...") # Debug
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error instantiating agent or getting repr: {e}")
|
66 |
+
return f"Error initializing agent: {e}", None
|
67 |
|
68 |
+
# 2. Fetch All Questions
|
69 |
+
print(f"Fetching questions from: {questions_url}")
|
|
|
|
|
|
|
|
|
|
|
70 |
try:
|
71 |
+
response = requests.get(questions_url, timeout=15)
|
72 |
+
response.raise_for_status()
|
73 |
+
questions_data = response.json()
|
74 |
+
if not questions_data:
|
75 |
+
return "Fetched questions list is empty.", None
|
76 |
+
print(f"Fetched {len(questions_data)} questions.")
|
77 |
+
status_update = f"Fetched {len(questions_data)} questions. Running agent..."
|
78 |
+
# Yield intermediate status if using gr.update
|
|
|
|
|
|
|
79 |
except requests.exceptions.RequestException as e:
|
80 |
+
print(f"Error fetching questions: {e}")
|
81 |
+
return f"Error fetching questions: {e}", None
|
82 |
except Exception as e:
|
83 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
84 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# 3. Run Agent on Each Question
|
87 |
+
results_log = [] # To store data for the results table
|
88 |
+
answers_payload = [] # To store data for the submission API
|
89 |
+
for item in questions_data:
|
90 |
+
task_id = item.get("task_id")
|
91 |
+
question_text = item.get("question")
|
92 |
|
93 |
+
if not task_id or question_text is None:
|
94 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
95 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
try:
|
98 |
+
submitted_answer = agent(question_text) # Call the agent's logic
|
99 |
+
answers_payload.append({
|
100 |
+
"task_id": task_id,
|
101 |
+
"submitted_answer": submitted_answer
|
102 |
+
})
|
103 |
+
results_log.append({
|
104 |
+
"Task ID": task_id,
|
105 |
+
"Question": question_text,
|
106 |
+
"Submitted Answer": submitted_answer
|
107 |
+
})
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error running agent on task {task_id}: {e}")
|
110 |
+
# Decide how to handle agent errors - skip? submit default?
|
111 |
+
# Here, we'll just log and potentially skip submission for this task if needed
|
112 |
+
results_log.append({
|
113 |
+
"Task ID": task_id,
|
114 |
+
"Question": question_text,
|
115 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
116 |
+
})
|
117 |
+
|
118 |
+
|
119 |
+
if not answers_payload:
|
120 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
121 |
+
|
122 |
+
# 4. Prepare Submission
|
123 |
submission_data = {
|
124 |
"username": username.strip(),
|
125 |
"agent_code": agent_code,
|
126 |
+
"answers": answers_payload
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
}
|
128 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers..."
|
129 |
+
print(status_update)
|
130 |
|
131 |
+
# 5. Submit to Leaderboard
|
132 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
133 |
try:
|
134 |
+
response = requests.post(submit_url, json=submission_data, timeout=45) # Increased timeout
|
135 |
response.raise_for_status()
|
136 |
result_data = response.json()
|
137 |
+
|
138 |
+
# Prepare final status message and results table
|
139 |
+
final_status = (
|
140 |
f"Submission Successful!\n"
|
141 |
f"User: {result_data.get('username')}\n"
|
142 |
+
f"Overall Score: {result_data.get('score')}% "
|
143 |
+
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')} correct)\n"
|
144 |
+
f"Message: {result_data.get('message')}"
|
|
|
145 |
)
|
146 |
print("Submission successful.")
|
147 |
+
results_df = pd.DataFrame(results_log)
|
148 |
+
return final_status, results_df
|
149 |
+
|
150 |
except requests.exceptions.HTTPError as e:
|
|
|
151 |
error_detail = e.response.text
|
152 |
try:
|
153 |
error_json = e.response.json()
|
154 |
error_detail = error_json.get('detail', error_detail)
|
155 |
except requests.exceptions.JSONDecodeError:
|
156 |
+
pass
|
157 |
+
status_message = f"Submission Failed (HTTP {e.response.status_code}): {error_detail}"
|
158 |
+
print(status_message)
|
159 |
+
results_df = pd.DataFrame(results_log) # Show attempts even if submission failed
|
160 |
+
return status_message, results_df
|
161 |
except requests.exceptions.RequestException as e:
|
162 |
+
status_message = f"Submission Failed: Network error - {e}"
|
163 |
+
print(status_message)
|
164 |
+
results_df = pd.DataFrame(results_log)
|
165 |
+
return status_message, results_df
|
166 |
except Exception as e:
|
167 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
168 |
+
print(status_message)
|
169 |
+
results_df = pd.DataFrame(results_log)
|
170 |
+
return status_message, results_df
|
171 |
|
172 |
|
173 |
# --- Build Gradio Interface using Blocks ---
|
174 |
with gr.Blocks() as demo:
|
175 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
176 |
gr.Markdown(
|
177 |
+
"Enter the API URL and your username, then click Run. "
|
178 |
+
"This will fetch all questions, run the *very basic* agent on them, "
|
179 |
+
"submit all answers at once, and display the results."
|
180 |
)
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
with gr.Row():
|
183 |
api_url_input = gr.Textbox(label="FastAPI API URL", value=DEFAULT_API_URL)
|
184 |
hf_username_input = gr.Textbox(label="Hugging Face Username")
|
185 |
|
186 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
|
189 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
190 |
|
191 |
+
# --- Component Interaction ---
|
192 |
+
run_button.click(
|
193 |
+
fn=run_and_submit_all,
|
194 |
+
inputs=[api_url_input, hf_username_input],
|
195 |
+
outputs=[status_output, results_table]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
)
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
if __name__ == "__main__":
|
199 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
200 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|