Spaces:
Sleeping
Sleeping
File size: 13,709 Bytes
ca55784 2e07c12 aa09e80 ca55784 581d233 c4200bd 56b3140 581d233 ca55784 581d233 88ec884 ca55784 88ec884 ca55784 c4200bd ca55784 aa09e80 2e07c12 d81e17a 2e07c12 d81e17a 2e07c12 ca55784 581d233 aa09e80 581d233 ca55784 581d233 aa09e80 581d233 ca55784 88ec884 581d233 ca55784 c4200bd 581d233 c4200bd 581d233 ca55784 581d233 ca55784 581d233 ca55784 581d233 88ec884 581d233 88ec884 581d233 ca55784 60ae86a 56b3140 c4200bd 60ae86a c4200bd ca55784 581d233 ca55784 56b3140 88ec884 ca55784 581d233 ca55784 88ec884 581d233 ca55784 581d233 56b3140 8b40c0d ca55784 56b3140 ca55784 56b3140 2e07c12 ca55784 88ec884 60ae86a 56b3140 88ec884 56b3140 88ec884 56b3140 88ec884 56b3140 ca55784 88ec884 10965e6 ca55784 56b3140 88ec884 ca55784 581d233 ca55784 56b3140 c4200bd 581d233 ca55784 56b3140 88ec884 56b3140 88ec884 56b3140 ca55784 581d233 ca55784 581d233 c4200bd 581d233 ca55784 581d233 c4200bd 581d233 ca55784 88ec884 ca55784 2e07c12 ca55784 c4200bd ca55784 fec03fd ca55784 88ec884 fec03fd ca55784 88ec884 fec03fd ca55784 88ec884 ca55784 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import gradio as gr
import os
import time
from datetime import datetime
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain_core.documents import Document
from pptx import Presentation
from io import BytesIO
import shutil
import logging
import chromadb
import tempfile
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import requests
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment setup for Hugging Face token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN", "default-token")
if os.environ["HUGGINGFACEHUB_API_TOKEN"] == "default-token":
logger.warning("HUGGINGFACEHUB_API_TOKEN not set. Model may not work.")
# Model and embedding configuration
LLM_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
EMBEDDING_MODEL = "BAAI/bge-large-en-v1.5"
# Global state
vector_store = None
qa_chain = None
chat_history = []
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
PERSIST_DIRECTORY = tempfile.mkdtemp() # Use temporary directory for ChromaDB
# Custom prompt templates
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(
"""Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question, incorporating relevant context from the conversation.
Chat History:
{chat_history}
Follow-up Question: {question}
Standalone Question:"""
)
QA_PROMPT = PromptTemplate.from_template(
"""You are a document Q&A chatbot. Your task is to answer questions dynamically based solely on the provided document context, without using external knowledge unless explicitly requested. For summarization questions, provide a concise and accurate summary of the document content. For questions seeking specific information, extract relevant details directly from the document. For queries about word or phrase presence, check if they appear exactly or as part of a larger phrase. If the document lacks relevant information, clearly state that no relevant information is available. Tailor your response to the user's prompt, ensuring clarity and relevance.
Document Context:
{context}
Question: {question}
Answer:"""
)
# Custom PPTX loader
class PPTXLoader:
def __init__(self, file_path):
self.file_path = file_path
def load(self):
docs = []
try:
with open(self.file_path, "rb") as f:
prs = Presentation(BytesIO(f.read()))
for slide_num, slide in enumerate(prs.slides, 1):
text = ""
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text:
text += shape.text + "\n"
if text.strip():
docs.append(Document(
page_content=text,
metadata={"source": self.file_path, "slide": slide_num}
))
except Exception as e:
logger.error(f"Error loading PPTX {self.file_path}: {str(e)}")
return []
return docs
# Function to load documents
def load_documents(files):
documents = []
for file in files:
try:
file_path = file.name
logger.info(f"Loading file: {file_path}")
if file_path.endswith(".pdf"):
loader = PyPDFLoader(file_path)
documents.extend(loader.load())
elif file_path.endswith(".txt"):
loader = TextLoader(file_path)
documents.extend(loader.load())
elif file_path.endswith(".docx"):
loader = Docx2txtLoader(file_path)
documents.extend(loader.load())
elif file_path.endswith(".pptx"):
loader = PPTXLoader(file_path)
documents.extend(loader.load())
except Exception as e:
logger.error(f"Error loading file {file_path}: {str(e)}")
continue
return documents
# Function to process documents and create vector store
def process_documents(files, chunk_size, chunk_overlap):
global vector_store
if not files:
return "Please upload at least one document.", None
# Clear existing vector store
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
logger.info("Cleared existing ChromaDB directory.")
except Exception as e:
logger.error(f"Error clearing ChromaDB directory: {str(e)}")
return f"Error clearing vector store: {str(e)}", None
os.makedirs(PERSIST_DIRECTORY, exist_ok=True)
# Load documents
documents = load_documents(files)
if not documents:
return "No valid documents loaded. Check file formats or content.", None
# Split documents
try:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=int(chunk_size),
chunk_overlap=int(chunk_overlap),
length_function=len
)
doc_splits = text_splitter.split_documents(documents)
logger.info(f"Split {len(documents)} documents into {len(doc_splits)} chunks.")
except Exception as e:
logger.error(f"Error splitting documents: {str(e)}")
return f"Error splitting documents: {str(e)}", None
# Create embeddings
try:
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
except Exception as e:
logger.error(f"Error initializing embeddings: {str(e)}")
return f"Error initializing embeddings: {str(e)}", None
# Create vector store
try:
collection_name = f"doctalk_collection_{int(time.time())}"
client = chromadb.Client()
vector_store = Chroma.from_documents(
documents=doc_splits,
embedding=embeddings,
collection_name=collection_name
)
return f"Processed {len(documents)} documents into {len(doc_splits)} chunks.", None
except Exception as e:
logger.error(f"Error creating vector store: {str(e)}")
return f"Error creating vector store: {str(e)}", None
# Function to initialize QA chain with retry logic
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((requests.exceptions.HTTPError, requests.exceptions.ConnectionError))
)
def initialize_qa_chain(temperature):
global qa_chain
if not vector_store:
return "Please process documents first.", None
try:
llm = HuggingFaceEndpoint(
repo_id=LLM_MODEL,
task="text-generation",
temperature=float(temperature),
max_new_tokens=512,
huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
timeout=30
)
collection = vector_store._collection
doc_count = collection.count()
k = min(3, doc_count) if doc_count > 0 else 1
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vector_store.as_retriever(search_kwargs={"k": k}),
memory=memory,
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
combine_docs_chain_kwargs={"prompt": QA_PROMPT}
)
logger.info(f"Initialized QA chain with {LLM_MODEL} and k={k}.")
return "QA Doctor: QA chain initialized successfully.", None
except requests.exceptions.HTTPError as e:
logger.error(f"HTTP error initializing QA chain: {str(e)}")
if "503" in str(e):
return "Error: Hugging Face API temporarily unavailable. Please wait and retry.", None
elif "403" in str(e):
return "Error: Access denied. Check your HF token or upgrade to Pro at https://huggingface.co/settings/billing.", None
return f"Error initializing QA chain: {str(e)}.", None
except Exception as e:
logger.error(f"Error initializing QA chain: {str(e)}")
return f"Error initializing QA chain: {str(e)}. Ensure your HF token is valid.", None
# Function to handle user query with retry logic
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((requests.exceptions.HTTPError, requests.exceptions.ConnectionError))
)
def answer_question(question, temperature, chunk_size, chunk_overlap):
global chat_history
if not vector_store:
return "Please process documents first.", chat_history
if not qa_chain:
return "Please initialize the QA chain.", chat_history
if not question.strip():
return "Please enter a valid question.", chat_history
try:
response = qa_chain.invoke({"question": question})["answer"]
chat_history.append({"role": "user", "content": question})
chat_history.append({"role": "assistant", "content": response})
logger.info(f"Answered question: {question}")
return response, chat_history
except requests.exceptions.HTTPError as e:
logger.error(f"HTTP error answering question: {str(e)}")
if "503" in str(e):
return "Error: Hugging Face API temporarily unavailable. Please wait and retry.", chat_history
elif "403" in str(e):
return "Error: Access denied. Check your HF token or upgrade to Pro at https://huggingface.co/settings/billing.", chat_history
return f"Error answering question: {str(e)}", chat_history
except Exception as e:
logger.error(f"Error answering question: {str(e)}")
return f"Error answering question: {str(e)}", chat_history
# Function to export chat history
def export_chat():
if not chat_history:
return "No chat history to export.", None
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_history_{timestamp}.txt"
with open(filename, "w") as f:
for message in chat_history:
role = message["role"].capitalize()
content = message["content"]
f.write(f"{role}: {content}\n\n")
logger.info(f"Exported chat history to {filename}.")
return f"Chat history exported to {filename}.", filename
except Exception as e:
logger.error(f"Error exporting chat history: {str(e)}")
return f"Error exporting chat history: {str(e)}", None
# Function to reset the app
def reset_app():
global vector_store, qa_chain, chat_history, memory
try:
vector_store = None
qa_chain = None
chat_history = []
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
if os.path.exists(PERSIST_DIRECTORY):
shutil.rmtree(PERSIST_DIRECTORY)
os.makedirs(PERSIST_DIRECTORY, exist_ok=True)
logger.info("Cleared ChromaDB directory on reset.")
logger.info("App reset successfully.")
return "App reset successfully.", None
except Exception as e:
logger.error(f"Error resetting app: {str(e)}")
return f"Error resetting app: {str(e)}", None
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="DocTalk: Document Q&A Chatbot") as demo:
gr.Markdown("# DocTalk: Document Q&A Chatbot")
gr.Markdown("Upload documents (PDF, TXT, DOCX, PPTX), tune parameters, and ask questions! Uses Mixtral-8x7B and BGE-Large for high accuracy.")
with gr.Row():
with gr.Column(scale=2):
file_upload = gr.Files(label="Upload Documents", file_types=[".pdf", ".txt", ".docx", ".pptx"])
with gr.Row():
process_button = gr.Button("Process Documents")
reset_button = gr.Button("Reset App")
status = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=1):
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.1, label="Temperature")
chunk_size = gr.Slider(minimum=500, maximum=2000, step=100, value=1000, label="Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=500, step=50, value=100, label="Chunk Overlap")
init_button = gr.Button("Initialize QA Chain")
gr.Markdown("## Chat Interface")
question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
answer = gr.Textbox(label="Answer", interactive=False)
chat_display = gr.Chatbot(label="Chat History", type="messages")
export_button = gr.Button("Export Chat History")
export_file = gr.File(label="Exported Chat File")
# Event handlers
process_button.click(
fn=process_documents,
inputs=[file_upload, chunk_size, chunk_overlap],
outputs=[status, chat_display]
)
init_button.click(
fn=initialize_qa_chain,
inputs=[temperature],
outputs=[status, chat_display]
)
question.submit(
fn=answer_question,
inputs=[question, temperature, chunk_size, chunk_overlap],
outputs=[answer, chat_display]
)
export_button.click(
fn=export_chat,
outputs=[status, export_file]
)
reset_button.click(
fn=reset_app,
outputs=[status, chat_display]
)
demo.launch() |