logasanjeev commited on
Commit
ca55784
·
verified ·
1 Parent(s): 4905a56

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +211 -0
app.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import time
4
+ from datetime import datetime
5
+ from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
6
+ from langchain_community.vectorstores import Chroma
7
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
8
+ from langchain_huggingface import HuggingFaceEndpoint, HuggingFaceEmbeddings
9
+ from langchain.chains import ConversationalRetrievalChain
10
+ from langchain.memory import ConversationBufferMemory
11
+ from pptx import Presentation
12
+ from io import BytesIO
13
+
14
+ # Environment setup for Hugging Face token
15
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN", "your-hf-token-here")
16
+
17
+ # Model and embedding options
18
+ LLM_MODELS = {
19
+ "Lightweight (Gemma-2B)": "google/gemma-2b-it",
20
+ "Balanced (Mixtral-8x7B)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
21
+ "High Accuracy (Llama-3-8B)": "meta-llama/Llama-3-8b-hf"
22
+ }
23
+
24
+ EMBEDDING_MODELS = {
25
+ "Lightweight (MiniLM-L6)": "sentence-transformers/all-MiniLM-L6-v2",
26
+ "Balanced (MPNet-Base)": "sentence-transformers/all-mpnet-base-v2",
27
+ "High Accuracy (BGE-Large)": "BAAI/bge-large-en-v1.5"
28
+ }
29
+
30
+ # Global state
31
+ vector_store = None
32
+ qa_chain = None
33
+ chat_history = []
34
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
35
+
36
+ # Custom PPTX loader
37
+ class PPTXLoader:
38
+ def __init__(self, file_path):
39
+ self.file_path = file_path
40
+
41
+ def load(self):
42
+ docs = []
43
+ with open(self.file_path, "rb") as f:
44
+ prs = Presentation(BytesIO(f.read()))
45
+ for slide_num, slide in enumerate(prs.slides, 1):
46
+ text = ""
47
+ for shape in slide.shapes:
48
+ if hasattr(shape, "text"):
49
+ text += shape.text + "\n"
50
+ if text.strip():
51
+ docs.append({"page_content": text, "metadata": {"source": self.file_path, "slide": slide_num}})
52
+ return docs
53
+
54
+ # Function to load documents
55
+ def load_documents(files):
56
+ documents = []
57
+ for file in files:
58
+ file_path = file.name
59
+ if file_path.endswith(".pdf"):
60
+ loader = PyPDFLoader(file_path)
61
+ documents.extend(loader.load())
62
+ elif file_path.endswith(".txt"):
63
+ loader = TextLoader(file_path)
64
+ documents.extend(loader.load())
65
+ elif file_path.endswith(".docx"):
66
+ loader = Docx2txtLoader(file_path)
67
+ documents.extend(loader.load())
68
+ elif file_path.endswith(".pptx"):
69
+ loader = PPTXLoader(file_path)
70
+ documents.extend([{"page_content": doc["page_content"], "metadata": doc["metadata"]} for doc in loader.load()])
71
+ return documents
72
+
73
+ # Function to process documents and create vector store
74
+ def process_documents(files, chunk_size, chunk_overlap, embedding_model):
75
+ global vector_store, qa_chain
76
+ if not files:
77
+ return "Please upload at least one document.", None
78
+
79
+ # Load documents
80
+ documents = load_documents(files)
81
+ if not documents:
82
+ return "No valid documents loaded.", None
83
+
84
+ # Split documents
85
+ text_splitter = RecursiveCharacterTextSplitter(
86
+ chunk_size=int(chunk_size),
87
+ chunk_overlap=int(chunk_overlap),
88
+ length_function=len
89
+ )
90
+ doc_splits = text_splitter.split_documents(documents)
91
+
92
+ # Create embeddings
93
+ embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODELS[embedding_model])
94
+
95
+ # Create vector store
96
+ try:
97
+ vector_store = Chroma.from_documents(doc_splits, embeddings, persist_directory="./chroma_db")
98
+ return f"Processed {len(documents)} documents into {len(doc_splits)} chunks.", None
99
+ except Exception as e:
100
+ return f"Error processing documents: {str(e)}", None
101
+
102
+ # Function to initialize QA chain
103
+ def initialize_qa_chain(llm_model, temperature):
104
+ global qa_chain
105
+ try:
106
+ llm = HuggingFaceEndpoint(
107
+ repo_id=LLM_MODELS[llm_model],
108
+ temperature=float(temperature),
109
+ max_length=512,
110
+ huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"]
111
+ )
112
+ qa_chain = ConversationalRetrievalChain.from_llm(
113
+ llm=llm,
114
+ retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
115
+ memory=memory
116
+ )
117
+ return "QA chain initialized successfully.", None
118
+ except Exception as e:
119
+ return f"Error initializing QA chain: {str(e)}", None
120
+
121
+ # Function to handle user query
122
+ def answer_question(question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap):
123
+ global chat_history
124
+ if not vector_store or not qa_chain:
125
+ return "Please upload documents and initialize the QA chain.", chat_history
126
+
127
+ try:
128
+ response = qa_chain({"question": question})["answer"]
129
+ chat_history.append(("User", question))
130
+ chat_history.append(("Bot", response))
131
+ return response, chat_history
132
+ except Exception as e:
133
+ return f"Error answering question: {str(e)}", chat_history
134
+
135
+ # Function to export chat history
136
+ def export_chat():
137
+ if not chat_history:
138
+ return "No chat history to export.", None
139
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
140
+ filename = f"chat_history_{timestamp}.txt"
141
+ with open(filename, "w") as f:
142
+ for role, message in chat_history:
143
+ f.write(f"{role}: {message}\n\n")
144
+ return f"Chat history exported to {filename}.", filename
145
+
146
+ # Function to reset the app
147
+ def reset_app():
148
+ global vector_store, qa_chain, chat_history, memory
149
+ vector_store = None
150
+ qa_chain = None
151
+ chat_history = []
152
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
153
+ if os.path.exists("./chroma_db"):
154
+ import shutil
155
+ shutil.rmtree("./chroma_db")
156
+ return "App reset successfully.", None
157
+
158
+ # Gradio interface
159
+ with gr.Blocks(theme=gr.themes.Soft(), title="DocTalk: Document Q&A Chatbot") as demo:
160
+ gr.Markdown("# DocTalk: Document Q&A Chatbot")
161
+ gr.Markdown("Upload documents (PDF, TXT, DOCX, PPTX), select models, tune parameters, and ask questions!")
162
+
163
+ with gr.Row():
164
+ with gr.Column(scale=2):
165
+ file_upload = gr.Files(label="Upload Documents", file_types=[".pdf", ".txt", ".docx", ".pptx"])
166
+ with gr.Row():
167
+ process_button = gr.Button("Process Documents")
168
+ reset_button = gr.Button("Reset App")
169
+ status = gr.Textbox(label="Status", interactive=False)
170
+
171
+ with gr.Column(scale=1):
172
+ llm_model = gr.Dropdown(choices=list(LLM_MODELS.keys()), label="Select LLM Model", value="Lightweight (Gemma-2B)")
173
+ embedding_model = gr.Dropdown(choices=list(EMBEDDING_MODELS.keys()), label="Select Embedding Model", value="Lightweight (MiniLM-L6)")
174
+ temperature = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Temperature")
175
+ chunk_size = gr.Slider(minimum=500, maximum=2000, step=100, value=1000, label="Chunk Size")
176
+ chunk_overlap = gr.Slider(minimum=0, maximum=500, step=50, value=100, label="Chunk Overlap")
177
+ init_button = gr.Button("Initialize QA Chain")
178
+
179
+ gr.Markdown("## Chat Interface")
180
+ question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
181
+ answer = gr.Textbox(label="Answer", interactive=False)
182
+ chat_display = gr.Chatbot(label="Chat History")
183
+ export_button = gr.Button("Export Chat History")
184
+ export_file = gr.File(label="Exported Chat File")
185
+
186
+ # Event handlers
187
+ process_button.click(
188
+ fn=process_documents,
189
+ inputs=[file_upload, chunk_size, chunk_overlap, embedding_model],
190
+ outputs=[status, chat_display]
191
+ )
192
+ init_button.click(
193
+ fn=initialize_qa_chain,
194
+ inputs=[llm_model, temperature],
195
+ outputs=[status, chat_display]
196
+ )
197
+ question.submit(
198
+ fn=answer_question,
199
+ inputs=[question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap],
200
+ outputs=[answer, chat_display]
201
+ )
202
+ export_button.click(
203
+ fn=export_chat,
204
+ outputs=[status, export_file]
205
+ )
206
+ reset_button.click(
207
+ fn=reset_app,
208
+ outputs=[status, chat_display]
209
+ )
210
+
211
+ demo.launch()