logasanjeev commited on
Commit
56b3140
·
verified ·
1 Parent(s): a3998fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -11
app.py CHANGED
@@ -14,6 +14,8 @@ import shutil
14
  import logging
15
  import chromadb
16
  import tempfile
 
 
17
 
18
  # Set up logging
19
  logging.basicConfig(level=logging.INFO)
@@ -26,8 +28,8 @@ if os.environ["HUGGINGFACEHUB_API_TOKEN"] == "default-token":
26
 
27
  # Model and embedding options
28
  LLM_MODELS = {
29
- "Lightweight (Gemma-2B)": "google/gemma-2b-it",
30
  "Balanced (Mixtral-8x7B)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
 
31
  "High Accuracy (Llama-3-8B)": "meta-llama/Llama-3-8b-hf"
32
  }
33
 
@@ -133,13 +135,12 @@ def process_documents(files, chunk_size, chunk_overlap, embedding_model):
133
 
134
  # Create vector store
135
  try:
136
- # Use a unique collection name to avoid conflicts
137
  collection_name = f"doctalk_collection_{int(time.time())}"
138
- client = chromadb.PersistentClient(path=PERSIST_DIRECTORY)
139
  vector_store = Chroma.from_documents(
140
  documents=doc_splits,
141
  embedding=embeddings,
142
- persist_directory=PERSIST_DIRECTORY,
143
  collection_name=collection_name
144
  )
145
  return f"Processed {len(documents)} documents into {len(doc_splits)} chunks.", None
@@ -147,7 +148,12 @@ def process_documents(files, chunk_size, chunk_overlap, embedding_model):
147
  logger.error(f"Error creating vector store: {str(e)}")
148
  return f"Error creating vector store: {str(e)}", None
149
 
150
- # Function to initialize QA chain
 
 
 
 
 
151
  def initialize_qa_chain(llm_model, temperature):
152
  global qa_chain
153
  if not vector_store:
@@ -159,20 +165,37 @@ def initialize_qa_chain(llm_model, temperature):
159
  task="text-generation",
160
  temperature=float(temperature),
161
  max_new_tokens=512,
162
- huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"]
 
163
  )
 
 
 
 
164
  qa_chain = ConversationalRetrievalChain.from_llm(
165
  llm=llm,
166
- retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
167
  memory=memory
168
  )
169
- logger.info(f"Initialized QA chain with {llm_model}.")
170
  return "QA Doctor: QA chain initialized successfully.", None
 
 
 
 
 
 
 
171
  except Exception as e:
172
  logger.error(f"Error initializing QA chain for {llm_model}: {str(e)}")
173
  return f"Error initializing QA chain: {str(e)}. Ensure your HF token has access to {llm_model}.", None
174
 
175
- # Function to handle user query
 
 
 
 
 
176
  def answer_question(question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap):
177
  global chat_history
178
  if not vector_store:
@@ -183,11 +206,18 @@ def answer_question(question, llm_model, embedding_model, temperature, chunk_siz
183
  return "Please enter a valid question.", chat_history
184
 
185
  try:
186
- response = qa_chain({"question": question})["answer"]
187
  chat_history.append({"role": "user", "content": question})
188
  chat_history.append({"role": "assistant", "content": response})
189
  logger.info(f"Answered question: {question}")
190
  return response, chat_history
 
 
 
 
 
 
 
191
  except Exception as e:
192
  logger.error(f"Error answering question: {str(e)}")
193
  return f"Error answering question: {str(e)}", chat_history
@@ -242,7 +272,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DocTalk: Document Q&A Chatbot") as
242
  status = gr.Textbox(label="Status", interactive=False)
243
 
244
  with gr.Column(scale=1):
245
- llm_model = gr.Dropdown(choices=list(LLM_MODELS.keys()), label="Select LLM Model", value="Lightweight (Gemma-2B)")
246
  embedding_model = gr.Dropdown(choices=list(EMBEDDING_MODELS.keys()), label="Select Embedding Model", value="Lightweight (MiniLM-L6)")
247
  temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature")
248
  chunk_size = gr.Slider(minimum=500, maximum=2000, step=100, value=1000, label="Chunk Size")
 
14
  import logging
15
  import chromadb
16
  import tempfile
17
+ from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
18
+ import requests
19
 
20
  # Set up logging
21
  logging.basicConfig(level=logging.INFO)
 
28
 
29
  # Model and embedding options
30
  LLM_MODELS = {
 
31
  "Balanced (Mixtral-8x7B)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
32
+ "Lightweight (Gemma-2B)": "google/gemma-2b-it",
33
  "High Accuracy (Llama-3-8B)": "meta-llama/Llama-3-8b-hf"
34
  }
35
 
 
135
 
136
  # Create vector store
137
  try:
138
+ # Use in-memory Chroma client to avoid filesystem issues
139
  collection_name = f"doctalk_collection_{int(time.time())}"
140
+ client = chromadb.Client()
141
  vector_store = Chroma.from_documents(
142
  documents=doc_splits,
143
  embedding=embeddings,
 
144
  collection_name=collection_name
145
  )
146
  return f"Processed {len(documents)} documents into {len(doc_splits)} chunks.", None
 
148
  logger.error(f"Error creating vector store: {str(e)}")
149
  return f"Error creating vector store: {str(e)}", None
150
 
151
+ # Function to initialize QA chain with retry logic
152
+ @retry(
153
+ stop=stop_after_attempt(3),
154
+ wait=wait_exponential(multiplier=1, min=4, max=10),
155
+ retry=retry_if_exception_type((requests.exceptions.HTTPError, requests.exceptions.ConnectionError))
156
+ )
157
  def initialize_qa_chain(llm_model, temperature):
158
  global qa_chain
159
  if not vector_store:
 
165
  task="text-generation",
166
  temperature=float(temperature),
167
  max_new_tokens=512,
168
+ huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
169
+ timeout=30
170
  )
171
+ # Dynamically set k based on vector store size
172
+ collection = vector_store._collection
173
+ doc_count = collection.count()
174
+ k = min(3, doc_count) if doc_count > 0 else 1
175
  qa_chain = ConversationalRetrievalChain.from_llm(
176
  llm=llm,
177
+ retriever=vector_store.as_retriever(search_kwargs={"k": k}),
178
  memory=memory
179
  )
180
+ logger.info(f"Initialized QA chain with {llm_model} and k={k}.")
181
  return "QA Doctor: QA chain initialized successfully.", None
182
+ except requests.exceptions.HTTPError as e:
183
+ logger.error(f"HTTP error initializing QA chain for {llm_model}: {str(e)}")
184
+ if "503" in str(e):
185
+ return f"Error: Hugging Face API temporarily unavailable for {llm_model}. Try 'Balanced (Mixtral-8x7B)' or wait and retry.", None
186
+ elif "403" in str(e):
187
+ return f"Error: Access denied for {llm_model}. Ensure your HF token has access.", None
188
+ return f"Error initializing QA chain: {str(e)}.", None
189
  except Exception as e:
190
  logger.error(f"Error initializing QA chain for {llm_model}: {str(e)}")
191
  return f"Error initializing QA chain: {str(e)}. Ensure your HF token has access to {llm_model}.", None
192
 
193
+ # Function to handle user query with retry logic
194
+ @retry(
195
+ stop=stop_after_attempt(3),
196
+ wait=wait_exponential(multiplier=1, min=4, max=10),
197
+ retry=retry_if_exception_type((requests.exceptions.HTTPError, requests.exceptions.ConnectionError))
198
+ )
199
  def answer_question(question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap):
200
  global chat_history
201
  if not vector_store:
 
206
  return "Please enter a valid question.", chat_history
207
 
208
  try:
209
+ response = qa_chain.invoke({"question": question})["answer"]
210
  chat_history.append({"role": "user", "content": question})
211
  chat_history.append({"role": "assistant", "content": response})
212
  logger.info(f"Answered question: {question}")
213
  return response, chat_history
214
+ except requests.exceptions.HTTPError as e:
215
+ logger.error(f"HTTP error answering question: {str(e)}")
216
+ if "503" in str(e):
217
+ return f"Error: Hugging Face API temporarily unavailable for {llm_model}. Try 'Balanced (Mixtral-8x7B)' or wait and retry.", chat_history
218
+ elif "403" in str(e):
219
+ return f"Error: Access denied for {llm_model}. Ensure your HF token has access.", chat_history
220
+ return f"Error answering question: {str(e)}", chat_history
221
  except Exception as e:
222
  logger.error(f"Error answering question: {str(e)}")
223
  return f"Error answering question: {str(e)}", chat_history
 
272
  status = gr.Textbox(label="Status", interactive=False)
273
 
274
  with gr.Column(scale=1):
275
+ llm_model = gr.Dropdown(choices=list(LLM_MODELS.keys()), label="Select LLM Model", value="Balanced (Mixtral-8x7B)")
276
  embedding_model = gr.Dropdown(choices=list(EMBEDDING_MODELS.keys()), label="Select Embedding Model", value="Lightweight (MiniLM-L6)")
277
  temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature")
278
  chunk_size = gr.Slider(minimum=500, maximum=2000, step=100, value=1000, label="Chunk Size")