File size: 13,261 Bytes
ca55784
 
 
 
 
 
 
 
 
 
 
 
581d233
 
c4200bd
 
56b3140
 
581d233
 
 
 
ca55784
 
581d233
 
 
ca55784
 
 
 
56b3140
ca55784
 
 
 
 
 
 
 
 
 
 
 
 
 
c4200bd
ca55784
 
 
 
 
 
 
 
581d233
 
 
 
 
 
 
 
 
 
 
 
 
ca55784
 
 
 
 
 
581d233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca55784
 
 
 
581d233
ca55784
 
 
c4200bd
581d233
 
 
 
 
 
 
c4200bd
581d233
ca55784
 
 
581d233
ca55784
 
581d233
 
 
 
 
 
 
 
 
 
 
ca55784
 
581d233
 
 
 
 
ca55784
 
 
56b3140
60ae86a
56b3140
c4200bd
 
 
60ae86a
c4200bd
ca55784
 
581d233
 
ca55784
56b3140
 
 
 
 
 
ca55784
 
581d233
 
 
ca55784
 
 
581d233
ca55784
581d233
56b3140
 
ca55784
56b3140
 
 
 
ca55784
 
56b3140
ca55784
 
56b3140
60ae86a
56b3140
 
 
 
 
 
 
ca55784
581d233
 
ca55784
56b3140
 
 
 
 
 
ca55784
 
581d233
 
 
 
 
 
ca55784
 
56b3140
c4200bd
 
581d233
ca55784
56b3140
 
 
 
 
 
 
ca55784
581d233
ca55784
 
 
 
 
 
581d233
 
 
 
c4200bd
 
 
 
581d233
 
 
 
 
ca55784
 
 
 
581d233
 
 
 
 
 
 
c4200bd
581d233
 
 
 
 
 
ca55784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b3140
ca55784
581d233
ca55784
 
 
 
 
 
 
c4200bd
ca55784
 
 
fec03fd
ca55784
 
 
fec03fd
ca55784
 
 
 
fec03fd
ca55784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import gradio as gr
import os
import time
from datetime import datetime
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from pptx import Presentation
from io import BytesIO
import shutil
import logging
import chromadb
import tempfile
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import requests

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Environment setup for Hugging Face token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN", "default-token")
if os.environ["HUGGINGFACEHUB_API_TOKEN"] == "default-token":
    logger.warning("HUGGINGFACEHUB_API_TOKEN not set. Some models may not work.")

# Model and embedding options
LLM_MODELS = {
    "Balanced (Mixtral-8x7B)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Lightweight (Gemma-2B)": "google/gemma-2b-it",
    "High Accuracy (Llama-3-8B)": "meta-llama/Llama-3-8b-hf"
}

EMBEDDING_MODELS = {
    "Lightweight (MiniLM-L6)": "sentence-transformers/all-MiniLM-L6-v2",
    "Balanced (MPNet-Base)": "sentence-transformers/all-mpnet-base-v2",
    "High Accuracy (BGE-Large)": "BAAI/bge-large-en-v1.5"
}

# Global state
vector_store = None
qa_chain = None
chat_history = []
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
PERSIST_DIRECTORY = tempfile.mkdtemp()  # Use temporary directory for ChromaDB

# Custom PPTX loader
class PPTXLoader:
    def __init__(self, file_path):
        self.file_path = file_path

    def load(self):
        docs = []
        try:
            with open(self.file_path, "rb") as f:
                prs = Presentation(BytesIO(f.read()))
                for slide_num, slide in enumerate(prs.slides, 1):
                    text = ""
                    for shape in slide.shapes:
                        if hasattr(shape, "text") and shape.text:
                            text += shape.text + "\n"
                    if text.strip():
                        docs.append({"page_content": text, "metadata": {"source": self.file_path, "slide": slide_num}})
        except Exception as e:
            logger.error(f"Error loading PPTX {self.file_path}: {str(e)}")
            return []
        return docs

# Function to load documents
def load_documents(files):
    documents = []
    for file in files:
        try:
            file_path = file.name
            logger.info(f"Loading file: {file_path}")
            if file_path.endswith(".pdf"):
                loader = PyPDFLoader(file_path)
                documents.extend(loader.load())
            elif file_path.endswith(".txt"):
                loader = TextLoader(file_path)
                documents.extend(loader.load())
            elif file_path.endswith(".docx"):
                loader = Docx2txtLoader(file_path)
                documents.extend(loader.load())
            elif file_path.endswith(".pptx"):
                loader = PPTXLoader(file_path)
                documents.extend([{"page_content": doc["page_content"], "metadata": doc["metadata"]} for doc in loader.load()])
        except Exception as e:
            logger.error(f"Error loading file {file_path}: {str(e)}")
            continue
    return documents

# Function to process documents and create vector store
def process_documents(files, chunk_size, chunk_overlap, embedding_model):
    global vector_store
    if not files:
        return "Please upload at least one document.", None

    # Clear existing vector store
    if os.path.exists(PERSIST_DIRECTORY):
        try:
            shutil.rmtree(PERSIST_DIRECTORY)
            logger.info("Cleared existing ChromaDB directory.")
        except Exception as e:
            logger.error(f"Error clearing ChromaDB directory: {str(e)}")
            return f"Error clearing vector store: {str(e)}", None
    os.makedirs(PERSIST_DIRECTORY, exist_ok=True)

    # Load documents
    documents = load_documents(files)
    if not documents:
        return "No valid documents loaded. Check file formats or content.", None

    # Split documents
    try:
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=int(chunk_size),
            chunk_overlap=int(chunk_overlap),
            length_function=len
        )
        doc_splits = text_splitter.split_documents(documents)
        logger.info(f"Split {len(documents)} documents into {len(doc_splits)} chunks.")
    except Exception as e:
        logger.error(f"Error splitting documents: {str(e)}")
        return f"Error splitting documents: {str(e)}", None

    # Create embeddings
    try:
        embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODELS[embedding_model])
    except Exception as e:
        logger.error(f"Error initializing embeddings for {embedding_model}: {str(e)}")
        return f"Error initializing embeddings: {str(e)}", None

    # Create vector store
    try:
        # Use in-memory Chroma client to avoid filesystem issues
        collection_name = f"doctalk_collection_{int(time.time())}"
        client = chromadb.Client()
        vector_store = Chroma.from_documents(
            documents=doc_splits,
            embedding=embeddings,
            collection_name=collection_name
        )
        return f"Processed {len(documents)} documents into {len(doc_splits)} chunks.", None
    except Exception as e:
        logger.error(f"Error creating vector store: {str(e)}")
        return f"Error creating vector store: {str(e)}", None

# Function to initialize QA chain with retry logic
@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, min=4, max=10),
    retry=retry_if_exception_type((requests.exceptions.HTTPError, requests.exceptions.ConnectionError))
)
def initialize_qa_chain(llm_model, temperature):
    global qa_chain
    if not vector_store:
        return "Please process documents first.", None

    try:
        llm = HuggingFaceEndpoint(
            repo_id=LLM_MODELS[llm_model],
            task="text-generation",
            temperature=float(temperature),
            max_new_tokens=512,
            huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
            timeout=30
        )
        # Dynamically set k based on vector store size
        collection = vector_store._collection
        doc_count = collection.count()
        k = min(3, doc_count) if doc_count > 0 else 1
        qa_chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=vector_store.as_retriever(search_kwargs={"k": k}),
            memory=memory
        )
        logger.info(f"Initialized QA chain with {llm_model} and k={k}.")
        return "QA Doctor: QA chain initialized successfully.", None
    except requests.exceptions.HTTPError as e:
        logger.error(f"HTTP error initializing QA chain for {llm_model}: {str(e)}")
        if "503" in str(e):
            return f"Error: Hugging Face API temporarily unavailable for {llm_model}. Try 'Balanced (Mixtral-8x7B)' or wait and retry.", None
        elif "403" in str(e):
            return f"Error: Access denied for {llm_model}. Ensure your HF token has access.", None
        return f"Error initializing QA chain: {str(e)}.", None
    except Exception as e:
        logger.error(f"Error initializing QA chain for {llm_model}: {str(e)}")
        return f"Error initializing QA chain: {str(e)}. Ensure your HF token has access to {llm_model}.", None

# Function to handle user query with retry logic
@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, min=4, max=10),
    retry=retry_if_exception_type((requests.exceptions.HTTPError, requests.exceptions.ConnectionError))
)
def answer_question(question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap):
    global chat_history
    if not vector_store:
        return "Please process documents first.", chat_history
    if not qa_chain:
        return "Please initialize the QA chain.", chat_history
    if not question.strip():
        return "Please enter a valid question.", chat_history

    try:
        response = qa_chain.invoke({"question": question})["answer"]
        chat_history.append({"role": "user", "content": question})
        chat_history.append({"role": "assistant", "content": response})
        logger.info(f"Answered question: {question}")
        return response, chat_history
    except requests.exceptions.HTTPError as e:
        logger.error(f"HTTP error answering question: {str(e)}")
        if "503" in str(e):
            return f"Error: Hugging Face API temporarily unavailable for {llm_model}. Try 'Balanced (Mixtral-8x7B)' or wait and retry.", chat_history
        elif "403" in str(e):
            return f"Error: Access denied for {llm_model}. Ensure your HF token has access.", chat_history
        return f"Error answering question: {str(e)}", chat_history
    except Exception as e:
        logger.error(f"Error answering question: {str(e)}")
        return f"Error answering question: {str(e)}", chat_history

# Function to export chat history
def export_chat():
    if not chat_history:
        return "No chat history to export.", None
    try:
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"chat_history_{timestamp}.txt"
        with open(filename, "w") as f:
            for message in chat_history:
                role = message["role"].capitalize()
                content = message["content"]
                f.write(f"{role}: {content}\n\n")
        logger.info(f"Exported chat history to {filename}.")
        return f"Chat history exported to {filename}.", filename
    except Exception as e:
        logger.error(f"Error exporting chat history: {str(e)}")
        return f"Error exporting chat history: {str(e)}", None

# Function to reset the app
def reset_app():
    global vector_store, qa_chain, chat_history, memory
    try:
        vector_store = None
        qa_chain = None
        chat_history = []
        memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
        if os.path.exists(PERSIST_DIRECTORY):
            shutil.rmtree(PERSIST_DIRECTORY)
            os.makedirs(PERSIST_DIRECTORY, exist_ok=True)
            logger.info("Cleared ChromaDB directory on reset.")
        logger.info("App reset successfully.")
        return "App reset successfully.", None
    except Exception as e:
        logger.error(f"Error resetting app: {str(e)}")
        return f"Error resetting app: {str(e)}", None

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="DocTalk: Document Q&A Chatbot") as demo:
    gr.Markdown("# DocTalk: Document Q&A Chatbot")
    gr.Markdown("Upload documents (PDF, TXT, DOCX, PPTX), select models, tune parameters, and ask questions!")

    with gr.Row():
        with gr.Column(scale=2):
            file_upload = gr.Files(label="Upload Documents", file_types=[".pdf", ".txt", ".docx", ".pptx"])
            with gr.Row():
                process_button = gr.Button("Process Documents")
                reset_button = gr.Button("Reset App")
            status = gr.Textbox(label="Status", interactive=False)

        with gr.Column(scale=1):
            llm_model = gr.Dropdown(choices=list(LLM_MODELS.keys()), label="Select LLM Model", value="Balanced (Mixtral-8x7B)")
            embedding_model = gr.Dropdown(choices=list(EMBEDDING_MODELS.keys()), label="Select Embedding Model", value="Lightweight (MiniLM-L6)")
            temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature")
            chunk_size = gr.Slider(minimum=500, maximum=2000, step=100, value=1000, label="Chunk Size")
            chunk_overlap = gr.Slider(minimum=0, maximum=500, step=50, value=100, label="Chunk Overlap")
            init_button = gr.Button("Initialize QA Chain")

    gr.Markdown("## Chat Interface")
    question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
    answer = gr.Textbox(label="Answer", interactive=False)
    chat_display = gr.Chatbot(label="Chat History", type="messages")
    export_button = gr.Button("Export Chat History")
    export_file = gr.File(label="Exported Chat File")

    # Event handlers
    process_button.click(
        fn=process_documents,
        inputs=[file_upload, chunk_size, chunk_overlap, embedding_model],
        outputs=[status, chat_display]
    )
    init_button.click(
        fn=initialize_qa_chain,
        inputs=[llm_model, temperature],
        outputs=[status, chat_display]
    )
    question.submit(
        fn=answer_question,
        inputs=[question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap],
        outputs=[answer, chat_display]
    )
    export_button.click(
        fn=export_chat,
        outputs=[status, export_file]
    )
    reset_button.click(
        fn=reset_app,
        outputs=[status, chat_display]
    )

demo.launch()