kairunwen's picture
Update Code
57746f1
"""
ModelNet40 Dataset
get sampled point clouds of ModelNet40 (XYZ and normal from mesh, 10k points per shape)
at "https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip"
Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""
import os
import numpy as np
import pointops
import torch
from torch.utils.data import Dataset
from copy import deepcopy
from pointcept.utils.logger import get_root_logger
from .builder import DATASETS
from .transform import Compose
@DATASETS.register_module()
class ModelNetDataset(Dataset):
def __init__(
self,
split="train",
data_root="data/modelnet40",
class_names=None,
transform=None,
num_points=8192,
uniform_sampling=True,
save_record=True,
test_mode=False,
test_cfg=None,
loop=1,
):
super().__init__()
self.data_root = data_root
self.class_names = dict(zip(class_names, range(len(class_names))))
self.split = split
self.num_point = num_points
self.uniform_sampling = uniform_sampling
self.transform = Compose(transform)
self.loop = (
loop if not test_mode else 1
) # force make loop = 1 while in test mode
self.test_mode = test_mode
self.test_cfg = test_cfg if test_mode else None
if test_mode:
self.post_transform = Compose(self.test_cfg.post_transform)
self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform]
self.data_list = self.get_data_list()
logger = get_root_logger()
logger.info(
"Totally {} x {} samples in {} set.".format(
len(self.data_list), self.loop, split
)
)
# check, prepare record
record_name = f"modelnet40_{self.split}"
if num_points is not None:
record_name += f"_{num_points}points"
if uniform_sampling:
record_name += "_uniform"
record_path = os.path.join(self.data_root, f"{record_name}.pth")
if os.path.isfile(record_path):
logger.info(f"Loading record: {record_name} ...")
self.data = torch.load(record_path)
else:
logger.info(f"Preparing record: {record_name} ...")
self.data = {}
for idx in range(len(self.data_list)):
data_name = self.data_list[idx]
logger.info(f"Parsing data [{idx}/{len(self.data_list)}]: {data_name}")
self.data[data_name] = self.get_data(idx)
if save_record:
torch.save(self.data, record_path)
def get_data(self, idx):
data_idx = idx % len(self.data_list)
data_name = self.data_list[data_idx]
if data_name in self.data.keys():
return self.data[data_name]
else:
data_shape = "_".join(data_name.split("_")[0:-1])
data_path = os.path.join(
self.data_root, data_shape, self.data_list[data_idx] + ".txt"
)
data = np.loadtxt(data_path, delimiter=",").astype(np.float32)
if self.num_point is not None:
if self.uniform_sampling:
with torch.no_grad():
mask = pointops.farthest_point_sampling(
torch.tensor(data).float().cuda(),
torch.tensor([len(data)]).long().cuda(),
torch.tensor([self.num_point]).long().cuda(),
)
data = data[mask.cpu()]
else:
data = data[: self.num_point]
coord, normal = data[:, 0:3], data[:, 3:6]
category = np.array([self.class_names[data_shape]])
return dict(coord=coord, normal=normal, category=category)
def get_data_list(self):
assert isinstance(self.split, str)
split_path = os.path.join(
self.data_root, "modelnet40_{}.txt".format(self.split)
)
data_list = np.loadtxt(split_path, dtype="str")
return data_list
def get_data_name(self, idx):
data_idx = idx % len(self.data_list)
return self.data_list[data_idx]
def __getitem__(self, idx):
if self.test_mode:
return self.prepare_test_data(idx)
else:
return self.prepare_train_data(idx)
def __len__(self):
return len(self.data_list) * self.loop
def prepare_train_data(self, idx):
data_dict = self.get_data(idx)
data_dict = self.transform(data_dict)
return data_dict
def prepare_test_data(self, idx):
assert idx < len(self.data_list)
data_dict = self.get_data(idx)
category = data_dict.pop("category")
data_dict = self.transform(data_dict)
data_dict_list = []
for aug in self.aug_transform:
data_dict_list.append(aug(deepcopy(data_dict)))
for i in range(len(data_dict_list)):
data_dict_list[i] = self.post_transform(data_dict_list[i])
data_dict = dict(
voting_list=data_dict_list,
category=category,
name=self.get_data_name(idx),
)
return data_dict