File size: 5,313 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
ModelNet40 Dataset

get sampled point clouds of ModelNet40 (XYZ and normal from mesh, 10k points per shape)
at "https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip"

Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""

import os
import numpy as np
import pointops
import torch
from torch.utils.data import Dataset
from copy import deepcopy


from pointcept.utils.logger import get_root_logger
from .builder import DATASETS
from .transform import Compose


@DATASETS.register_module()
class ModelNetDataset(Dataset):
    def __init__(
        self,
        split="train",
        data_root="data/modelnet40",
        class_names=None,
        transform=None,
        num_points=8192,
        uniform_sampling=True,
        save_record=True,
        test_mode=False,
        test_cfg=None,
        loop=1,
    ):
        super().__init__()
        self.data_root = data_root
        self.class_names = dict(zip(class_names, range(len(class_names))))
        self.split = split
        self.num_point = num_points
        self.uniform_sampling = uniform_sampling
        self.transform = Compose(transform)
        self.loop = (
            loop if not test_mode else 1
        )  # force make loop = 1 while in test mode
        self.test_mode = test_mode
        self.test_cfg = test_cfg if test_mode else None
        if test_mode:
            self.post_transform = Compose(self.test_cfg.post_transform)
            self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform]

        self.data_list = self.get_data_list()
        logger = get_root_logger()
        logger.info(
            "Totally {} x {} samples in {} set.".format(
                len(self.data_list), self.loop, split
            )
        )

        # check, prepare record
        record_name = f"modelnet40_{self.split}"
        if num_points is not None:
            record_name += f"_{num_points}points"
            if uniform_sampling:
                record_name += "_uniform"
        record_path = os.path.join(self.data_root, f"{record_name}.pth")
        if os.path.isfile(record_path):
            logger.info(f"Loading record: {record_name} ...")
            self.data = torch.load(record_path)
        else:
            logger.info(f"Preparing record: {record_name} ...")
            self.data = {}
            for idx in range(len(self.data_list)):
                data_name = self.data_list[idx]
                logger.info(f"Parsing data [{idx}/{len(self.data_list)}]: {data_name}")
                self.data[data_name] = self.get_data(idx)
            if save_record:
                torch.save(self.data, record_path)

    def get_data(self, idx):
        data_idx = idx % len(self.data_list)
        data_name = self.data_list[data_idx]
        if data_name in self.data.keys():
            return self.data[data_name]
        else:
            data_shape = "_".join(data_name.split("_")[0:-1])
            data_path = os.path.join(
                self.data_root, data_shape, self.data_list[data_idx] + ".txt"
            )
            data = np.loadtxt(data_path, delimiter=",").astype(np.float32)
            if self.num_point is not None:
                if self.uniform_sampling:
                    with torch.no_grad():
                        mask = pointops.farthest_point_sampling(
                            torch.tensor(data).float().cuda(),
                            torch.tensor([len(data)]).long().cuda(),
                            torch.tensor([self.num_point]).long().cuda(),
                        )
                    data = data[mask.cpu()]
                else:
                    data = data[: self.num_point]
            coord, normal = data[:, 0:3], data[:, 3:6]
            category = np.array([self.class_names[data_shape]])
            return dict(coord=coord, normal=normal, category=category)

    def get_data_list(self):
        assert isinstance(self.split, str)
        split_path = os.path.join(
            self.data_root, "modelnet40_{}.txt".format(self.split)
        )
        data_list = np.loadtxt(split_path, dtype="str")
        return data_list

    def get_data_name(self, idx):
        data_idx = idx % len(self.data_list)
        return self.data_list[data_idx]

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_data(idx)
        else:
            return self.prepare_train_data(idx)

    def __len__(self):
        return len(self.data_list) * self.loop

    def prepare_train_data(self, idx):
        data_dict = self.get_data(idx)
        data_dict = self.transform(data_dict)
        return data_dict

    def prepare_test_data(self, idx):
        assert idx < len(self.data_list)
        data_dict = self.get_data(idx)
        category = data_dict.pop("category")
        data_dict = self.transform(data_dict)
        data_dict_list = []
        for aug in self.aug_transform:
            data_dict_list.append(aug(deepcopy(data_dict)))
        for i in range(len(data_dict_list)):
            data_dict_list[i] = self.post_transform(data_dict_list[i])
        data_dict = dict(
            voting_list=data_dict_list,
            category=category,
            name=self.get_data_name(idx),
        )
        return data_dict