""" ModelNet40 Dataset get sampled point clouds of ModelNet40 (XYZ and normal from mesh, 10k points per shape) at "https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip" Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite our work if the code is helpful to you. """ import os import numpy as np import pointops import torch from torch.utils.data import Dataset from copy import deepcopy from pointcept.utils.logger import get_root_logger from .builder import DATASETS from .transform import Compose @DATASETS.register_module() class ModelNetDataset(Dataset): def __init__( self, split="train", data_root="data/modelnet40", class_names=None, transform=None, num_points=8192, uniform_sampling=True, save_record=True, test_mode=False, test_cfg=None, loop=1, ): super().__init__() self.data_root = data_root self.class_names = dict(zip(class_names, range(len(class_names)))) self.split = split self.num_point = num_points self.uniform_sampling = uniform_sampling self.transform = Compose(transform) self.loop = ( loop if not test_mode else 1 ) # force make loop = 1 while in test mode self.test_mode = test_mode self.test_cfg = test_cfg if test_mode else None if test_mode: self.post_transform = Compose(self.test_cfg.post_transform) self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform] self.data_list = self.get_data_list() logger = get_root_logger() logger.info( "Totally {} x {} samples in {} set.".format( len(self.data_list), self.loop, split ) ) # check, prepare record record_name = f"modelnet40_{self.split}" if num_points is not None: record_name += f"_{num_points}points" if uniform_sampling: record_name += "_uniform" record_path = os.path.join(self.data_root, f"{record_name}.pth") if os.path.isfile(record_path): logger.info(f"Loading record: {record_name} ...") self.data = torch.load(record_path) else: logger.info(f"Preparing record: {record_name} ...") self.data = {} for idx in range(len(self.data_list)): data_name = self.data_list[idx] logger.info(f"Parsing data [{idx}/{len(self.data_list)}]: {data_name}") self.data[data_name] = self.get_data(idx) if save_record: torch.save(self.data, record_path) def get_data(self, idx): data_idx = idx % len(self.data_list) data_name = self.data_list[data_idx] if data_name in self.data.keys(): return self.data[data_name] else: data_shape = "_".join(data_name.split("_")[0:-1]) data_path = os.path.join( self.data_root, data_shape, self.data_list[data_idx] + ".txt" ) data = np.loadtxt(data_path, delimiter=",").astype(np.float32) if self.num_point is not None: if self.uniform_sampling: with torch.no_grad(): mask = pointops.farthest_point_sampling( torch.tensor(data).float().cuda(), torch.tensor([len(data)]).long().cuda(), torch.tensor([self.num_point]).long().cuda(), ) data = data[mask.cpu()] else: data = data[: self.num_point] coord, normal = data[:, 0:3], data[:, 3:6] category = np.array([self.class_names[data_shape]]) return dict(coord=coord, normal=normal, category=category) def get_data_list(self): assert isinstance(self.split, str) split_path = os.path.join( self.data_root, "modelnet40_{}.txt".format(self.split) ) data_list = np.loadtxt(split_path, dtype="str") return data_list def get_data_name(self, idx): data_idx = idx % len(self.data_list) return self.data_list[data_idx] def __getitem__(self, idx): if self.test_mode: return self.prepare_test_data(idx) else: return self.prepare_train_data(idx) def __len__(self): return len(self.data_list) * self.loop def prepare_train_data(self, idx): data_dict = self.get_data(idx) data_dict = self.transform(data_dict) return data_dict def prepare_test_data(self, idx): assert idx < len(self.data_list) data_dict = self.get_data(idx) category = data_dict.pop("category") data_dict = self.transform(data_dict) data_dict_list = [] for aug in self.aug_transform: data_dict_list.append(aug(deepcopy(data_dict))) for i in range(len(data_dict_list)): data_dict_list[i] = self.post_transform(data_dict_list[i]) data_dict = dict( voting_list=data_dict_list, category=category, name=self.get_data_name(idx), ) return data_dict