Spaces:
Running
Running
File size: 4,060 Bytes
f23d324 0000b07 f23d324 ba47cad f23d324 ba47cad 7abb419 c255de1 ba47cad c255de1 ba47cad c255de1 ba47cad 7abb419 ba47cad 7abb419 ba47cad 7abb419 ba47cad 7abb419 ba47cad 7abb419 c255de1 7abb419 ba47cad c255de1 7abb419 ba47cad 7abb419 c255de1 ba47cad 7abb419 c255de1 b8dc4cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
"""from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import gradio as gr
from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
from PIL import Image
import torch
import fitz # PyMuPDF for PDF
app = FastAPI()
# ========== Image QA Setup ==========
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def answer_question_from_image(image, question):
if image is None or not question.strip():
return "Please upload an image and ask a question."
inputs = vqa_processor(image, question, return_tensors="pt")
with torch.no_grad():
outputs = vqa_model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
return vqa_model.config.id2label[predicted_id]
# ========== Gradio Interfaces ==========
img_interface = gr.Interface(
fn=answer_question_from_image,
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
outputs="text",
title="Image Question Answering"
)
# ========== Combine and Mount ==========
demo = gr.TabbedInterface( img_interface , "Image QA")
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def root():
return RedirectResponse(url="/") """
"""from transformers import ViltProcessor, ViltForQuestionAnswering
import torch
# Load image QA model once
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def answer_question_from_image(image, question):
if image is None or not question.strip():
return "Please upload an image and ask a question."
inputs = vqa_processor(image, question, return_tensors="pt")
with torch.no_grad():
outputs = vqa_model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
return vqa_model.config.id2label[predicted_id]"""
### β
appImage.py β Image QA Backend (Cleaned)
from fastapi import FastAPI
from fastapi.responses import RedirectResponse, JSONResponse, FileResponse
import os
from PIL import Image
from transformers import ViltProcessor, ViltForQuestionAnswering, pipeline
from gtts import gTTS
import easyocr
import torch
import tempfile
import numpy as np
from io import BytesIO
app = FastAPI()
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
reader = easyocr.Reader(['en', 'fr'])
def classify_question(question: str):
q = question.lower()
if any(w in q for w in ["text", "say", "written", "read"]):
return "ocr"
if any(w in q for w in ["caption", "describe", "what is in the image"]):
return "caption"
return "vqa"
def answer_question_from_image(image, question):
if image is None or not question.strip():
return "Please upload an image and ask a question.", None
mode = classify_question(question)
try:
if mode == "ocr":
result = reader.readtext(np.array(image))
answer = " ".join([entry[1] for entry in result]) or "No readable text found."
elif mode == "caption":
answer = captioner(image)[0]['generated_text']
else:
inputs = vqa_processor(image, question, return_tensors="pt")
with torch.no_grad():
outputs = vqa_model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
answer = vqa_model.config.id2label[predicted_id]
tts = gTTS(text=answer)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tts.save(tmp.name)
return answer, tmp.name
except Exception as e:
return f"Error: {e}", None
@app.get("/")
def home():
return RedirectResponse(url="/templates/home.html")
|