Spaces:
Running
Running
Update appImage.py
Browse files- appImage.py +13 -45
appImage.py
CHANGED
@@ -49,7 +49,8 @@ def answer_question_from_image(image, question):
|
|
49 |
|
50 |
predicted_id = outputs.logits.argmax(-1).item()
|
51 |
return vqa_model.config.id2label[predicted_id]"""
|
52 |
-
|
|
|
53 |
from fastapi.responses import RedirectResponse, JSONResponse, FileResponse
|
54 |
import os
|
55 |
from PIL import Image
|
@@ -63,20 +64,18 @@ from io import BytesIO
|
|
63 |
|
64 |
app = FastAPI()
|
65 |
|
66 |
-
# Load models
|
67 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
68 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
69 |
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
70 |
reader = easyocr.Reader(['en', 'fr'])
|
71 |
|
72 |
def classify_question(question: str):
|
73 |
-
|
74 |
-
if any(
|
75 |
return "ocr"
|
76 |
-
|
77 |
return "caption"
|
78 |
-
|
79 |
-
return "vqa"
|
80 |
|
81 |
def answer_question_from_image(image, question):
|
82 |
if image is None or not question.strip():
|
@@ -84,59 +83,28 @@ def answer_question_from_image(image, question):
|
|
84 |
|
85 |
mode = classify_question(question)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
result = reader.readtext(np.array(image))
|
90 |
-
|
91 |
-
answer = text.strip() or "No readable text found."
|
92 |
-
except Exception as e:
|
93 |
-
answer = f"OCR Error: {e}"
|
94 |
|
95 |
-
|
96 |
-
try:
|
97 |
answer = captioner(image)[0]['generated_text']
|
98 |
-
except Exception as e:
|
99 |
-
answer = f"Captioning error: {e}"
|
100 |
|
101 |
-
|
102 |
-
try:
|
103 |
inputs = vqa_processor(image, question, return_tensors="pt")
|
104 |
with torch.no_grad():
|
105 |
outputs = vqa_model(**inputs)
|
106 |
predicted_id = outputs.logits.argmax(-1).item()
|
107 |
answer = vqa_model.config.id2label[predicted_id]
|
108 |
-
except Exception as e:
|
109 |
-
answer = f"VQA error: {e}"
|
110 |
|
111 |
-
try:
|
112 |
tts = gTTS(text=answer)
|
113 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
114 |
tts.save(tmp.name)
|
115 |
-
|
116 |
-
except Exception as e:
|
117 |
-
return f"Answer: {answer}\n\n⚠️ Audio generation error: {e}", None
|
118 |
-
|
119 |
-
return answer, audio_path
|
120 |
-
|
121 |
-
@app.post("/predict")
|
122 |
-
async def predict(question: str = Form(...), file: UploadFile = Form(...)):
|
123 |
-
try:
|
124 |
-
image_data = await file.read()
|
125 |
-
image = Image.open(BytesIO(image_data)).convert("RGB")
|
126 |
-
answer, audio_path = answer_question_from_image(image, question)
|
127 |
-
|
128 |
-
if audio_path and os.path.exists(audio_path):
|
129 |
-
return JSONResponse({"answer": answer, "audio": f"/audio/{os.path.basename(audio_path)}"})
|
130 |
-
else:
|
131 |
-
return JSONResponse({"answer": answer})
|
132 |
|
133 |
except Exception as e:
|
134 |
-
return
|
135 |
-
|
136 |
-
@app.get("/audio/{filename}")
|
137 |
-
async def get_audio(filename: str):
|
138 |
-
filepath = os.path.join(tempfile.gettempdir(), filename)
|
139 |
-
return FileResponse(filepath, media_type="audio/mpeg")
|
140 |
|
141 |
@app.get("/")
|
142 |
def home():
|
|
|
49 |
|
50 |
predicted_id = outputs.logits.argmax(-1).item()
|
51 |
return vqa_model.config.id2label[predicted_id]"""
|
52 |
+
### ✅ appImage.py — Image QA Backend (Cleaned)
|
53 |
+
from fastapi import FastAPI
|
54 |
from fastapi.responses import RedirectResponse, JSONResponse, FileResponse
|
55 |
import os
|
56 |
from PIL import Image
|
|
|
64 |
|
65 |
app = FastAPI()
|
66 |
|
|
|
67 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
68 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
69 |
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
70 |
reader = easyocr.Reader(['en', 'fr'])
|
71 |
|
72 |
def classify_question(question: str):
|
73 |
+
q = question.lower()
|
74 |
+
if any(w in q for w in ["text", "say", "written", "read"]):
|
75 |
return "ocr"
|
76 |
+
if any(w in q for w in ["caption", "describe", "what is in the image"]):
|
77 |
return "caption"
|
78 |
+
return "vqa"
|
|
|
79 |
|
80 |
def answer_question_from_image(image, question):
|
81 |
if image is None or not question.strip():
|
|
|
83 |
|
84 |
mode = classify_question(question)
|
85 |
|
86 |
+
try:
|
87 |
+
if mode == "ocr":
|
88 |
result = reader.readtext(np.array(image))
|
89 |
+
answer = " ".join([entry[1] for entry in result]) or "No readable text found."
|
|
|
|
|
|
|
90 |
|
91 |
+
elif mode == "caption":
|
|
|
92 |
answer = captioner(image)[0]['generated_text']
|
|
|
|
|
93 |
|
94 |
+
else:
|
|
|
95 |
inputs = vqa_processor(image, question, return_tensors="pt")
|
96 |
with torch.no_grad():
|
97 |
outputs = vqa_model(**inputs)
|
98 |
predicted_id = outputs.logits.argmax(-1).item()
|
99 |
answer = vqa_model.config.id2label[predicted_id]
|
|
|
|
|
100 |
|
|
|
101 |
tts = gTTS(text=answer)
|
102 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
103 |
tts.save(tmp.name)
|
104 |
+
return answer, tmp.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
except Exception as e:
|
107 |
+
return f"Error: {e}", None
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
@app.get("/")
|
110 |
def home():
|