ikraamkb commited on
Commit
f23d324
·
verified ·
1 Parent(s): 52e04fe

Update appImage.py

Browse files
Files changed (1) hide show
  1. appImage.py +19 -2
appImage.py CHANGED
@@ -1,4 +1,4 @@
1
- from fastapi import FastAPI
2
  from fastapi.responses import RedirectResponse
3
  import gradio as gr
4
  from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
@@ -31,4 +31,21 @@ demo = gr.TabbedInterface( img_interface , "Image QA")
31
  app = gr.mount_gradio_app(app, demo, path="/")
32
  @app.get("/")
33
  def root():
34
- return RedirectResponse(url="/")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """from fastapi import FastAPI
2
  from fastapi.responses import RedirectResponse
3
  import gradio as gr
4
  from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
 
31
  app = gr.mount_gradio_app(app, demo, path="/")
32
  @app.get("/")
33
  def root():
34
+ return RedirectResponse(url="/") """
35
+ from transformers import ViltProcessor, ViltForQuestionAnswering
36
+ import torch
37
+
38
+ # Load image QA model once
39
+ vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
40
+ vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
41
+
42
+ def answer_question_from_image(image, question):
43
+ if image is None or not question.strip():
44
+ return "Please upload an image and ask a question."
45
+
46
+ inputs = vqa_processor(image, question, return_tensors="pt")
47
+ with torch.no_grad():
48
+ outputs = vqa_model(**inputs)
49
+
50
+ predicted_id = outputs.logits.argmax(-1).item()
51
+ return vqa_model.config.id2label[predicted_id]