Spaces:
Running
Running
File size: 9,446 Bytes
e2fade1 0c9548a 0540355 29f5581 0540355 29f5581 b1622cb d74850e 29f5581 0540355 4e1a845 29f5581 4e1a845 29f5581 4e1a845 29f5581 239c804 0540355 29f5581 8e24199 29f5581 1be9899 0540355 4e1a845 0540355 4e1a845 0540355 4e1a845 0540355 29f5581 4e1a845 29f5581 4e1a845 29f5581 4e1a845 29f5581 4e1a845 2be14bd 29f5581 4e1a845 29f5581 4e1a845 2be14bd 0540355 29f5581 4e1a845 29f5581 4e1a845 29f5581 4e1a845 29f5581 0540355 29f5581 4e1a845 93ae425 4e1a845 0540355 29f5581 4e1a845 29f5581 4e1a845 29f5581 4e1a845 d74850e 0540355 0b363e7 93ae425 0540355 29f5581 0b363e7 29f5581 0b363e7 29f5581 2be14bd 4e1a845 d2931fe 0540355 2be14bd 4e1a845 d2931fe 0540355 7e5ddc3 29f5581 4e1a845 29f5581 753db53 4e1a845 2852c90 2be14bd 93ae425 0540355 93ae425 0540355 93ae425 0540355 93ae425 0540355 01cb6f1 4e1a845 0540355 f404b85 d74850e 1b0d519 f404b85 e2fade1 a768964 e2fade1 a768964 8802df4 a768964 8802df4 a768964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
"""import gradio as gr
import numpy as np
import fitz # PyMuPDF
import torch
import asyncio
from fastapi import FastAPI
from transformers import pipeline
from PIL import Image
from starlette.responses import RedirectResponse
from openpyxl import load_workbook
from docx import Document
from pptx import Presentation
# Initialize FastAPI
app = FastAPI()
# Use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"β
Using device: {device}")
# Function to load models lazily
def get_qa_pipeline():
print("π Loading QA pipeline model...")
return pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=device, torch_dtype=torch.float16)
def get_image_captioning_pipeline():
print("π Loading Image Captioning model...")
return pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
MAX_INPUT_LENGTH = 1024 # Limit input length for faster processing
# β
Validate File Type
def validate_file_type(file):
if hasattr(file, "name"):
ext = file.name.split(".")[-1].lower()
print(f"π File extension detected: {ext}")
if ext not in ALLOWED_EXTENSIONS:
print(f"β Unsupported file format: {ext}")
return f"β Unsupported file format: {ext}"
return None
print("β Invalid file format!")
return "β Invalid file format!"
# β
Extract Text from PDF
async def extract_text_from_pdf(file):
print(f"π Extracting text from PDF: {file.name}")
loop = asyncio.get_event_loop()
text = await loop.run_in_executor(None, lambda: "\n".join([page.get_text() for page in fitz.open(file.name)]))
print(f"β
Extracted {len(text)} characters from PDF")
return text
# β
Extract Text from DOCX
async def extract_text_from_docx(file):
print(f"π Extracting text from DOCX: {file.name}")
loop = asyncio.get_event_loop()
text = await loop.run_in_executor(None, lambda: "\n".join([p.text for p in Document(file).paragraphs]))
print(f"β
Extracted {len(text)} characters from DOCX")
return text
# β
Extract Text from PPTX
async def extract_text_from_pptx(file):
print(f"π Extracting text from PPTX: {file.name}")
loop = asyncio.get_event_loop()
text = await loop.run_in_executor(None, lambda: "\n".join([shape.text for slide in Presentation(file).slides for shape in slide.shapes if hasattr(shape, "text")]))
print(f"β
Extracted {len(text)} characters from PPTX")
return text
# β
Extract Text from Excel
async def extract_text_from_excel(file):
print(f"π Extracting text from Excel: {file.name}")
loop = asyncio.get_event_loop()
text = await loop.run_in_executor(None, lambda: "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in load_workbook(file.name, data_only=True).worksheets for row in sheet.iter_rows(values_only=True)]))
print(f"β
Extracted {len(text)} characters from Excel")
return text
# β
Truncate Long Text
def truncate_text(text):
print(f"βοΈ Truncating text to {MAX_INPUT_LENGTH} characters (if needed)...")
return text[:MAX_INPUT_LENGTH] if len(text) > MAX_INPUT_LENGTH else text
# β
Answer Questions from Image or Document
async def answer_question(file, question: str):
print(f"β Question received: {question}")
if isinstance(file, np.ndarray): # Image Processing
print("πΌοΈ Processing image for captioning...")
image = Image.fromarray(file)
image_captioning = get_image_captioning_pipeline()
caption = image_captioning(image)[0]['generated_text']
print(f"π Generated caption: {caption}")
qa = get_qa_pipeline()
print("π€ Running QA model...")
response = qa(f"Question: {question}\nContext: {caption}")
print(f"β
Model response: {response[0]['generated_text']}")
return response[0]["generated_text"]
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.name.split(".")[-1].lower()
# Extract text asynchronously
if file_ext == "pdf":
text = await extract_text_from_pdf(file)
elif file_ext == "docx":
text = await extract_text_from_docx(file)
elif file_ext == "pptx":
text = await extract_text_from_pptx(file)
elif file_ext == "xlsx":
text = await extract_text_from_excel(file)
else:
print("β Unsupported file format!")
return "β Unsupported file format!"
if not text:
print("β οΈ No text extracted from the document.")
return "β οΈ No text extracted from the document."
truncated_text = truncate_text(text)
# Run QA model asynchronously
print("π€ Running QA model...")
loop = asyncio.get_event_loop()
qa = get_qa_pipeline()
response = await loop.run_in_executor(None, qa, f"Question: {question}\nContext: {truncated_text}")
print(f"β
Model response: {response[0]['generated_text']}")
return response[0]["generated_text"]
# β
Gradio Interface (Separate File & Image Inputs)
with gr.Blocks() as demo:
gr.Markdown("## π AI-Powered Document & Image QA")
with gr.Row():
file_input = gr.File(label="Upload Document")
image_input = gr.Image(label="Upload Image")
question_input = gr.Textbox(label="Ask a Question", placeholder="What is this document about?")
answer_output = gr.Textbox(label="Answer")
submit_btn = gr.Button("Get Answer")
submit_btn.click(answer_question, inputs=[file_input, question_input], outputs=answer_output)
# β
Mount Gradio with FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/")
"""
import gradio as gr
import numpy as np
import fitz # PyMuPDF
import torch
from fastapi import FastAPI
from transformers import pipeline
from PIL import Image
from starlette.responses import RedirectResponse
from openpyxl import load_workbook
from docx import Document
from pptx import Presentation
# β
Initialize FastAPI
app = FastAPI()
# β
Check if CUDA is Available (For Debugging)
device = "cpu"
print(f"β
Running on: {device}")
# β
Lazy Load Model Function (Loads Only When Needed)
def get_qa_pipeline():
print("π Loading QA Model on CPU...")
return pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
def get_image_captioning_pipeline():
print("π Loading Image Captioning Model on CPU...")
return pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning", device=-1)
# β
File Type Validation
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
def validate_file_type(file):
print(f"π Validating file: {file.name}")
ext = file.name.split(".")[-1].lower()
return None if ext in ALLOWED_EXTENSIONS else f"β Unsupported file format: {ext}"
# β
Extract Text Functions (Optimized)
def extract_text_from_pdf(file):
print("π Extracting text from PDF...")
with fitz.open(file.name) as doc:
return " ".join(page.get_text() for page in doc)
def extract_text_from_docx(file):
print("π Extracting text from DOCX...")
doc = Document(file.name)
return " ".join(p.text for p in doc.paragraphs)
def extract_text_from_pptx(file):
print("π Extracting text from PPTX...")
ppt = Presentation(file.name)
return " ".join(shape.text for slide in ppt.slides for shape in slide.shapes if hasattr(shape, "text"))
def extract_text_from_excel(file):
print("π Extracting text from Excel...")
wb = load_workbook(file.name, data_only=True)
return " ".join(" ".join(str(cell) for cell in row if cell) for sheet in wb.worksheets for row in sheet.iter_rows(values_only=True))
# β
Question Answering Function (Efficient Processing)
async def answer_question(file, question: str):
print("π Processing file for QA...")
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.name.split(".")[-1].lower()
text = ""
if file_ext == "pdf":
text = extract_text_from_pdf(file)
elif file_ext == "docx":
text = extract_text_from_docx(file)
elif file_ext == "pptx":
text = extract_text_from_pptx(file)
elif file_ext == "xlsx":
text = extract_text_from_excel(file)
if not text.strip():
return "β οΈ No text extracted from the document."
print("βοΈ Truncating text for faster processing...")
truncated_text = text[:1024] # Reduce to 1024 characters for better speed
qa_pipeline = get_qa_pipeline()
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
return response[0]["generated_text"]
# β
Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π AI-Powered Document & Image QA")
with gr.Row():
file_input = gr.File(label="Upload Document")
question_input = gr.Textbox(label="Ask a Question", placeholder="What is this document about?")
answer_output = gr.Textbox(label="Answer")
submit_btn = gr.Button("Get Answer")
submit_btn.click(answer_question, inputs=[file_input, question_input], outputs=answer_output)
# β
Mount Gradio with FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/")
|