Spaces:
Running
Running
File size: 9,417 Bytes
6daac1d 2852c90 2be14bd 1be9899 65aa3e7 dbe3ba4 28de64c a5ffabc 65aa3e7 0c9548a b1622cb 65aa3e7 3fac00e 2be14bd 65aa3e7 9a2af53 3fac00e 239c804 65aa3e7 8e24199 1be9899 65aa3e7 d2931fe 8e24199 d2931fe 8e24199 1be9899 c724805 d2931fe 2be14bd 1be9899 65aa3e7 8e24199 1be9899 65aa3e7 2852c90 3fac00e d2931fe 8e24199 d2931fe 2be14bd 65aa3e7 8e24199 d2931fe 65aa3e7 3fac00e d2931fe 8e24199 d2931fe 2be14bd 65aa3e7 3fac00e 65aa3e7 8e24199 1be9899 65aa3e7 8e24199 3fac00e d2931fe 8e24199 d2931fe 8e24199 65aa3e7 d2931fe 8e24199 65aa3e7 2be14bd 65aa3e7 2852c90 65aa3e7 2be14bd 65aa3e7 2be14bd d2931fe 2be14bd d2931fe 7e5ddc3 d2931fe 65aa3e7 3fac00e 2852c90 2be14bd 3fac00e 08338e1 65aa3e7 1be9899 ebf76ba 6a716a1 01cb6f1 6daac1d 01cb6f1 ebf76ba 01cb6f1 ebf76ba 01cb6f1 e8c3695 01cb6f1 ebf76ba 01cb6f1 ebf76ba 01cb6f1 6daac1d ebf76ba 01cb6f1 6daac1d 01cb6f1 6daac1d 01cb6f1 ebf76ba 01cb6f1 ebf76ba 65aa3e7 01cb6f1 6daac1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
from fastapi import FastAPI, File, UploadFile
import fitz # PyMuPDF for PDF parsing
from tika import parser # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
import torch
from torchvision import transforms
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from PIL import Image
from transformers import pipeline
import gradio as gr
from fastapi.responses import RedirectResponse
import numpy as np
# Initialize FastAPI
print("π FastAPI server is starting...")
app = FastAPI()
# Load AI Model for Question Answering (DeepSeek-V2-Chat)
from transformers import AutoModelForCausalLM, AutoTokenizer
# Preload Hugging Face model
print(f"π Loading models")
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
# Load Pretrained Object Detection Model (Torchvision)
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn(weights=weights)
model.eval()
# Image Transformations
transform = transforms.Compose([
transforms.ToTensor()
])
# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
def validate_file_type(file):
ext = file.name.split(".")[-1].lower()
print(f"π Validating file type: {ext}")
if ext not in ALLOWED_EXTENSIONS:
return f"β Unsupported file format: {ext}"
return None
# Function to truncate text to 450 tokens
def truncate_text(text, max_tokens=450):
words = text.split()
truncated = " ".join(words[:max_tokens])
print(f"βοΈ Truncated text to {max_tokens} tokens.")
return truncated
# Document Text Extraction Functions
def extract_text_from_pdf(pdf_file):
try:
print("π Extracting text from PDF...")
doc = fitz.open(pdf_file)
text = "\n".join([page.get_text("text") for page in doc])
print("β
PDF text extraction completed.")
return text if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading PDF: {str(e)}"
def extract_text_with_tika(file):
try:
print("π Extracting text with Tika...")
parsed = parser.from_buffer(file)
print("β
Tika text extraction completed.")
return parsed.get("content", "β οΈ No text found.").strip()
except Exception as e:
return f"β Error reading document: {str(e)}"
def extract_text_from_pptx(pptx_file):
try:
print("π Extracting text from PPTX...")
ppt = Presentation(pptx_file)
text = []
for slide in ppt.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
print("β
PPTX text extraction completed.")
return "\n".join(text) if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading PPTX: {str(e)}"
def extract_text_from_excel(excel_file):
try:
print("π Extracting text from Excel...")
wb = openpyxl.load_workbook(excel_file, read_only=True)
text = []
for sheet in wb.worksheets:
for row in sheet.iter_rows(values_only=True):
text.append(" ".join(map(str, row)))
print("β
Excel text extraction completed.")
return "\n".join(text) if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading Excel: {str(e)}"
def answer_question_from_document(file, question):
print("π Processing document for QA...")
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.name.split(".")[-1].lower()
if file_ext == "pdf":
text = extract_text_from_pdf(file)
elif file_ext in ["docx", "pptx"]:
text = extract_text_with_tika(file)
elif file_ext == "xlsx":
text = extract_text_from_excel(file)
else:
return "β Unsupported file format!"
if not text:
return "β οΈ No text extracted from the document."
truncated_text = truncate_text(text)
print("π€ Generating response...")
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
print("β
AI response generated.")
return response[0]["generated_text"]
print("β
Models loaded successfully.")
doc_interface = gr.Interface(fn=answer_question_from_document, inputs=[gr.File(), gr.Textbox()], outputs="text")
demo = gr.TabbedInterface([doc_interface], ["Document QA"])
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/")
"""import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from fastapi import FastAPI
from transformers import pipeline
from fastapi.responses import RedirectResponse
import io
import ast
from PIL import Image
import re
# β
Load AI models
print("π Initializing application...")
table_analyzer = pipeline("question-answering", model="deepset/tinyroberta-squad2", device=-1)
code_generator = pipeline("text-generation", model="distilgpt2", device=-1)
print("β
AI models loaded successfully!")
# β
Initialize FastAPI
app = FastAPI()
def generate_visualization(excel_file, viz_type, user_request):
Generates Python visualization code and insights based on user requests and Excel data.
try:
print("π Loading Excel file...")
df = pd.read_excel(excel_file)
print("β
File loaded successfully! Columns:", df.columns)
# Convert date columns
for col in df.select_dtypes(include=["object", "datetime64"]):
try:
df[col] = pd.to_datetime(df[col], errors='coerce').dt.strftime('%Y-%m-%d %H:%M:%S')
except Exception:
pass
df = df.fillna(0) # Fill NaN values
formatted_table = [{col: str(value) for col, value in row.items()} for row in df.to_dict(orient="records")]
print(f"π Formatted table: {formatted_table[:5]}")
print(f"π User request: {user_request}")
if not isinstance(user_request, str):
raise ValueError("User request must be a string")
print("π§ Sending data to TAPAS model for analysis...")
table_answer = table_analyzer({"table": formatted_table, "query": user_request})
print("β
Table analysis completed!")
# β
AI-generated code
prompt = f Generate clean and executable Python code to visualize the following dataset:
Columns: {list(df.columns)}
Visualization type: {viz_type}
User request: {user_request}
Use the provided DataFrame 'df' without reloading it.
Ensure 'plt.show()' is at the end.
print("π€ Sending request to AI code generator...")
generated_code = code_generator(prompt, max_length=200)[0]['generated_text']
print("π AI-generated code:")
print(generated_code)
# β
Validate generated code
valid_syntax = re.match(r".*plt\.show\(\).*", generated_code, re.DOTALL)
if not valid_syntax:
print("β οΈ AI code generation failed! Using fallback visualization...")
return generated_code, "Error: The AI did not generate a valid Matplotlib script."
try:
ast.parse(generated_code) # Syntax validation
except SyntaxError as e:
return generated_code, f"Syntax error: {e}"
# β
Execute AI-generated code
try:
print("β‘ Executing AI-generated code...")
exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df.copy(), "io": io}
exec(generated_code, exec_globals)
fig = plt.gcf()
img_buf = io.BytesIO()
fig.savefig(img_buf, format='png')
img_buf.seek(0)
plt.close(fig)
except Exception as e:
print(f"β Error executing AI-generated code: {str(e)}")
return generated_code, f"Error executing visualization: {str(e)}"
img = Image.open(img_buf)
return generated_code, img
except Exception as e:
print(f"β An error occurred: {str(e)}")
return f"Error: {str(e)}", "Table analysis failed."
# β
Gradio UI setup
print("π οΈ Setting up Gradio interface...")
gradio_ui = gr.Interface(
fn=generate_visualization,
inputs=[
gr.File(label="Upload Excel File"),
gr.Radio([
"Bar Chart", "Line Chart", "Scatter Plot", "Histogram",
"Boxplot", "Heatmap", "Pie Chart", "Area Chart", "Bubble Chart", "Violin Plot"
], label="Select Visualization Type"),
gr.Textbox(label="Enter visualization request (e.g., 'Sales trend over time')")
],
outputs=[
gr.Code(label="Generated Python Code"),
gr.Image(label="Visualization Result")
],
title="AI-Powered Data Visualization π",
description="Upload an Excel file, choose your visualization type, and ask a question about your data!"
)
print("β
Gradio interface configured successfully!")
# β
Mount Gradio app
print("π Mounting Gradio interface on FastAPI...")
app = gr.mount_gradio_app(app, gradio_ui, path="/")
print("β
Gradio interface mounted successfully!")
@app.get("/")
def home():
print("π Redirecting to UI...")
return RedirectResponse(url="/")""" |