File size: 9,417 Bytes
6daac1d
2852c90
 
2be14bd
 
1be9899
65aa3e7
 
dbe3ba4
28de64c
a5ffabc
65aa3e7
0c9548a
b1622cb
65aa3e7
3fac00e
2be14bd
 
65aa3e7
 
 
 
9a2af53
3fac00e
239c804
65aa3e7
 
 
 
 
 
 
 
 
 
8e24199
 
 
 
1be9899
65aa3e7
d2931fe
8e24199
d2931fe
8e24199
 
1be9899
c724805
 
d2931fe
 
 
2be14bd
1be9899
65aa3e7
8e24199
1be9899
65aa3e7
2852c90
3fac00e
d2931fe
8e24199
d2931fe
2be14bd
65aa3e7
8e24199
d2931fe
65aa3e7
3fac00e
d2931fe
8e24199
d2931fe
2be14bd
65aa3e7
 
 
 
 
 
 
 
 
3fac00e
65aa3e7
 
 
 
 
8e24199
1be9899
65aa3e7
8e24199
 
 
 
3fac00e
d2931fe
8e24199
d2931fe
8e24199
65aa3e7
d2931fe
8e24199
 
 
65aa3e7
2be14bd
65aa3e7
2852c90
65aa3e7
2be14bd
65aa3e7
2be14bd
d2931fe
2be14bd
d2931fe
7e5ddc3
d2931fe
65aa3e7
3fac00e
2852c90
2be14bd
3fac00e
 
 
 
08338e1
65aa3e7
1be9899
ebf76ba
 
 
6a716a1
01cb6f1
6daac1d
 
01cb6f1
 
 
 
 
ebf76ba
01cb6f1
 
 
 
ebf76ba
01cb6f1
 
e8c3695
01cb6f1
 
ebf76ba
01cb6f1
 
ebf76ba
01cb6f1
6daac1d
ebf76ba
01cb6f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6daac1d
01cb6f1
 
 
 
 
6daac1d
01cb6f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf76ba
 
01cb6f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf76ba
65aa3e7
 
01cb6f1
6daac1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from fastapi import FastAPI, File, UploadFile
import fitz  # PyMuPDF for PDF parsing
from tika import parser  # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
import torch
from torchvision import transforms
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from PIL import Image
from transformers import pipeline
import gradio as gr
from fastapi.responses import RedirectResponse
import numpy as np

# Initialize FastAPI
print("πŸš€ FastAPI server is starting...")
app = FastAPI()

# Load AI Model for Question Answering (DeepSeek-V2-Chat)
from transformers import AutoModelForCausalLM, AutoTokenizer

# Preload Hugging Face model
print(f"πŸ”„ Loading models")
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)

# Load Pretrained Object Detection Model (Torchvision)
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn(weights=weights)
model.eval()

# Image Transformations
transform = transforms.Compose([
    transforms.ToTensor()
])

# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}

def validate_file_type(file):
    ext = file.name.split(".")[-1].lower()
    print(f"πŸ” Validating file type: {ext}")
    if ext not in ALLOWED_EXTENSIONS:
        return f"❌ Unsupported file format: {ext}"
    return None

# Function to truncate text to 450 tokens
def truncate_text(text, max_tokens=450):
    words = text.split()
    truncated = " ".join(words[:max_tokens])
    print(f"βœ‚οΈ Truncated text to {max_tokens} tokens.")
    return truncated

# Document Text Extraction Functions
def extract_text_from_pdf(pdf_file):
    try:
        print("πŸ“„ Extracting text from PDF...")
        doc = fitz.open(pdf_file)
        text = "\n".join([page.get_text("text") for page in doc])
        print("βœ… PDF text extraction completed.")
        return text if text else "⚠️ No text found."
    except Exception as e:
        return f"❌ Error reading PDF: {str(e)}"

def extract_text_with_tika(file):
    try:
        print("πŸ“ Extracting text with Tika...")
        parsed = parser.from_buffer(file)
        print("βœ… Tika text extraction completed.")
        return parsed.get("content", "⚠️ No text found.").strip()
    except Exception as e:
        return f"❌ Error reading document: {str(e)}"

def extract_text_from_pptx(pptx_file):
    try:
        print("πŸ“Š Extracting text from PPTX...")
        ppt = Presentation(pptx_file)
        text = []
        for slide in ppt.slides:
            for shape in slide.shapes:
                if hasattr(shape, "text"):
                    text.append(shape.text)
        print("βœ… PPTX text extraction completed.")
        return "\n".join(text) if text else "⚠️ No text found."
    except Exception as e:
        return f"❌ Error reading PPTX: {str(e)}"

def extract_text_from_excel(excel_file):
    try:
        print("πŸ“Š Extracting text from Excel...")
        wb = openpyxl.load_workbook(excel_file, read_only=True)
        text = []
        for sheet in wb.worksheets:
            for row in sheet.iter_rows(values_only=True):
                text.append(" ".join(map(str, row)))
        print("βœ… Excel text extraction completed.")
        return "\n".join(text) if text else "⚠️ No text found."
    except Exception as e:
        return f"❌ Error reading Excel: {str(e)}"

def answer_question_from_document(file, question):
    print("πŸ“‚ Processing document for QA...")
    validation_error = validate_file_type(file)
    if validation_error:
        return validation_error
    file_ext = file.name.split(".")[-1].lower()
    if file_ext == "pdf":
        text = extract_text_from_pdf(file)
    elif file_ext in ["docx", "pptx"]:
        text = extract_text_with_tika(file)
    elif file_ext == "xlsx":
        text = extract_text_from_excel(file)
    else:
        return "❌ Unsupported file format!"
    if not text:
        return "⚠️ No text extracted from the document."
    truncated_text = truncate_text(text)
    print("πŸ€– Generating response...")
    response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
    print("βœ… AI response generated.")
    return response[0]["generated_text"]

print("βœ… Models loaded successfully.")

doc_interface = gr.Interface(fn=answer_question_from_document, inputs=[gr.File(), gr.Textbox()], outputs="text")

demo = gr.TabbedInterface([doc_interface], ["Document QA"])
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def home():
    return RedirectResponse(url="/")



"""import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from fastapi import FastAPI
from transformers import pipeline
from fastapi.responses import RedirectResponse
import io
import ast
from PIL import Image
import re

# βœ… Load AI models
print("πŸš€ Initializing application...")
table_analyzer = pipeline("question-answering", model="deepset/tinyroberta-squad2", device=-1)
code_generator = pipeline("text-generation", model="distilgpt2", device=-1)
print("βœ… AI models loaded successfully!")

# βœ… Initialize FastAPI
app = FastAPI()

def generate_visualization(excel_file, viz_type, user_request):
    Generates Python visualization code and insights based on user requests and Excel data.
    try:
        print("πŸ“‚ Loading Excel file...")
        df = pd.read_excel(excel_file)
        print("βœ… File loaded successfully! Columns:", df.columns)

        # Convert date columns
        for col in df.select_dtypes(include=["object", "datetime64"]):
            try:
                df[col] = pd.to_datetime(df[col], errors='coerce').dt.strftime('%Y-%m-%d %H:%M:%S')
            except Exception:
                pass

        df = df.fillna(0)  # Fill NaN values

        formatted_table = [{col: str(value) for col, value in row.items()} for row in df.to_dict(orient="records")]
        print(f"πŸ“Š Formatted table: {formatted_table[:5]}")
        print(f"πŸ” User request: {user_request}")

        if not isinstance(user_request, str):
            raise ValueError("User request must be a string")

        print("🧠 Sending data to TAPAS model for analysis...")
        table_answer = table_analyzer({"table": formatted_table, "query": user_request})
        print("βœ… Table analysis completed!")

        # βœ… AI-generated code
        prompt = f Generate clean and executable Python code to visualize the following dataset:
        Columns: {list(df.columns)}
        Visualization type: {viz_type}
        User request: {user_request}
        Use the provided DataFrame 'df' without reloading it.
        Ensure 'plt.show()' is at the end.
        

        print("πŸ€– Sending request to AI code generator...")
        generated_code = code_generator(prompt, max_length=200)[0]['generated_text']
        print("πŸ“ AI-generated code:")
        print(generated_code)

        # βœ… Validate generated code
        valid_syntax = re.match(r".*plt\.show\(\).*", generated_code, re.DOTALL)
        if not valid_syntax:
            print("⚠️ AI code generation failed! Using fallback visualization...")
            return generated_code, "Error: The AI did not generate a valid Matplotlib script."

        try:
            ast.parse(generated_code)  # Syntax validation
        except SyntaxError as e:
            return generated_code, f"Syntax error: {e}"

        # βœ… Execute AI-generated code
        try:
            print("⚑ Executing AI-generated code...")
            exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df.copy(), "io": io}
            exec(generated_code, exec_globals)

            fig = plt.gcf()
            img_buf = io.BytesIO()
            fig.savefig(img_buf, format='png')
            img_buf.seek(0)
            plt.close(fig)
        except Exception as e:
            print(f"❌ Error executing AI-generated code: {str(e)}")
            return generated_code, f"Error executing visualization: {str(e)}"

        img = Image.open(img_buf)
        return generated_code, img

    except Exception as e:
        print(f"❌ An error occurred: {str(e)}")
        return f"Error: {str(e)}", "Table analysis failed."

# βœ… Gradio UI setup
print("πŸ› οΈ Setting up Gradio interface...")
gradio_ui = gr.Interface(
    fn=generate_visualization,
    inputs=[
        gr.File(label="Upload Excel File"),
        gr.Radio([
            "Bar Chart", "Line Chart", "Scatter Plot", "Histogram", 
            "Boxplot", "Heatmap", "Pie Chart", "Area Chart", "Bubble Chart", "Violin Plot"
        ], label="Select Visualization Type"),
        gr.Textbox(label="Enter visualization request (e.g., 'Sales trend over time')")
    ],
    outputs=[
        gr.Code(label="Generated Python Code"),
        gr.Image(label="Visualization Result")
    ],
    title="AI-Powered Data Visualization πŸ“Š",
    description="Upload an Excel file, choose your visualization type, and ask a question about your data!"
)
print("βœ… Gradio interface configured successfully!")

# βœ… Mount Gradio app
print("πŸ”— Mounting Gradio interface on FastAPI...")
app = gr.mount_gradio_app(app, gradio_ui, path="/")
print("βœ… Gradio interface mounted successfully!")

@app.get("/")
def home():
    print("🏠 Redirecting to UI...")
    return RedirectResponse(url="/")"""