Spaces:
Running
Running
# app_logic.py | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, hashlib, datetime | |
from nltk.tokenize import sent_tokenize | |
from fpdf import FPDF | |
from gtts import gTTS | |
nltk.download('punkt', quiet=True) | |
# Load once | |
MODEL_NAME = "facebook/bart-large-cnn" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) | |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4) | |
reader = easyocr.Reader(['en'], gpu=False) | |
summary_cache = {} | |
def clean_text(text): | |
text = re.sub(r'\s+', ' ', text) | |
text = re.sub(r'\u2022\s*|\d\.\s+', '', text) | |
text = re.sub(r'\[.*?\]|\(.*?\)', '', text) | |
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) | |
return text.strip() | |
def extract_text(file_path, file_extension): | |
try: | |
if file_extension in ["pdf"]: | |
with fitz.open(file_path) as doc: | |
text = "\n".join(page.get_text("text") for page in doc) | |
if len(text.strip()) < 50: | |
images = [page.get_pixmap() for page in doc] | |
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
images[0].save(temp_img.name) | |
ocr_result = reader.readtext(temp_img.name, detail=0) | |
os.unlink(temp_img.name) | |
text = "\n".join(ocr_result) if ocr_result else text | |
elif file_extension in ["docx"]: | |
doc = docx.Document(file_path) | |
text = "\n".join(p.text for p in doc.paragraphs) | |
elif file_extension in ["pptx"]: | |
prs = pptx.Presentation(file_path) | |
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")) | |
elif file_extension in ["xlsx"]: | |
wb = openpyxl.load_workbook(file_path, read_only=True) | |
text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]) | |
else: | |
return "", "Unsupported file type" | |
return clean_text(text), "" | |
except Exception as e: | |
return "", f"Extraction error: {e}" | |
def chunk_text(text, max_tokens=950): | |
sentences = sent_tokenize(text) | |
chunks, current_chunk = [], "" | |
for sentence in sentences: | |
if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens: | |
current_chunk += " " + sentence | |
else: | |
chunks.append(current_chunk.strip()) | |
current_chunk = sentence | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return chunks | |
def generate_summary(text, length="medium"): | |
cache_key = hashlib.md5((text + length).encode()).hexdigest() | |
if cache_key in summary_cache: | |
return summary_cache[cache_key] | |
params = {"short": (30, 80), "medium": (80, 200), "long": (210, 300)}[length] | |
min_len, max_len = params | |
chunks = chunk_text(text) | |
summaries = summarizer(chunks, max_length=max_len, min_length=min_len, do_sample=False) | |
final_summary = " ".join(s['summary_text'] for s in summaries) | |
summary_cache[cache_key] = final_summary | |
return final_summary | |
def text_to_speech(text): | |
try: | |
tts = gTTS(text) | |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") | |
tts.save(temp_audio.name) | |
return temp_audio.name | |
except: | |
return "" | |
def create_pdf(summary, original_filename): | |
try: | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", 'B', 16) | |
pdf.cell(200, 10, "Summary", ln=True, align='C') | |
pdf.set_font("Arial", size=12) | |
pdf.multi_cell(0, 10, summary) | |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") | |
pdf.output(temp_pdf.name) | |
return temp_pdf.name | |
except: | |
return "" | |