Summarization / app.py
ikraamkb's picture
Update app.py
08f3d12 verified
raw
history blame
3.99 kB
# app_logic.py
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, hashlib, datetime
from nltk.tokenize import sent_tokenize
from fpdf import FPDF
from gtts import gTTS
nltk.download('punkt', quiet=True)
# Load once
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
reader = easyocr.Reader(['en'], gpu=False)
summary_cache = {}
def clean_text(text):
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
return text.strip()
def extract_text(file_path, file_extension):
try:
if file_extension in ["pdf"]:
with fitz.open(file_path) as doc:
text = "\n".join(page.get_text("text") for page in doc)
if len(text.strip()) < 50:
images = [page.get_pixmap() for page in doc]
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
images[0].save(temp_img.name)
ocr_result = reader.readtext(temp_img.name, detail=0)
os.unlink(temp_img.name)
text = "\n".join(ocr_result) if ocr_result else text
elif file_extension in ["docx"]:
doc = docx.Document(file_path)
text = "\n".join(p.text for p in doc.paragraphs)
elif file_extension in ["pptx"]:
prs = pptx.Presentation(file_path)
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
elif file_extension in ["xlsx"]:
wb = openpyxl.load_workbook(file_path, read_only=True)
text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
else:
return "", "Unsupported file type"
return clean_text(text), ""
except Exception as e:
return "", f"Extraction error: {e}"
def chunk_text(text, max_tokens=950):
sentences = sent_tokenize(text)
chunks, current_chunk = [], ""
for sentence in sentences:
if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text, length="medium"):
cache_key = hashlib.md5((text + length).encode()).hexdigest()
if cache_key in summary_cache:
return summary_cache[cache_key]
params = {"short": (30, 80), "medium": (80, 200), "long": (210, 300)}[length]
min_len, max_len = params
chunks = chunk_text(text)
summaries = summarizer(chunks, max_length=max_len, min_length=min_len, do_sample=False)
final_summary = " ".join(s['summary_text'] for s in summaries)
summary_cache[cache_key] = final_summary
return final_summary
def text_to_speech(text):
try:
tts = gTTS(text)
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio.name)
return temp_audio.name
except:
return ""
def create_pdf(summary, original_filename):
try:
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, "Summary", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, summary)
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf.name
except:
return ""