File size: 3,989 Bytes
08f3d12
da10ca7
08f3d12
6f78a44
 
08f3d12
7839da1
 
 
08f3d12
7839da1
 
 
 
08f3d12
7839da1
 
 
08f3d12
7839da1
 
 
 
 
 
08f3d12
7839da1
08f3d12
7839da1
 
 
 
 
 
 
 
 
08f3d12
7839da1
08f3d12
 
7839da1
08f3d12
 
7839da1
08f3d12
 
 
 
 
7839da1
08f3d12
7839da1
08f3d12
 
 
7839da1
08f3d12
7839da1
 
 
 
 
 
 
 
08f3d12
7839da1
 
 
 
08f3d12
 
7839da1
08f3d12
 
 
7839da1
 
 
08f3d12
7839da1
 
 
 
 
08f3d12
7839da1
 
08f3d12
7839da1
 
 
 
08f3d12
7839da1
08f3d12
7839da1
 
 
08f3d12
7839da1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# app_logic.py
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, hashlib, datetime
from nltk.tokenize import sent_tokenize
from fpdf import FPDF
from gtts import gTTS

nltk.download('punkt', quiet=True)

# Load once
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
reader = easyocr.Reader(['en'], gpu=False)

summary_cache = {}

def clean_text(text):
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
    text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
    text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
    return text.strip()

def extract_text(file_path, file_extension):
    try:
        if file_extension in ["pdf"]:
            with fitz.open(file_path) as doc:
                text = "\n".join(page.get_text("text") for page in doc)
                if len(text.strip()) < 50:
                    images = [page.get_pixmap() for page in doc]
                    temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
                    images[0].save(temp_img.name)
                    ocr_result = reader.readtext(temp_img.name, detail=0)
                    os.unlink(temp_img.name)
                    text = "\n".join(ocr_result) if ocr_result else text
        elif file_extension in ["docx"]:
            doc = docx.Document(file_path)
            text = "\n".join(p.text for p in doc.paragraphs)
        elif file_extension in ["pptx"]:
            prs = pptx.Presentation(file_path)
            text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
        elif file_extension in ["xlsx"]:
            wb = openpyxl.load_workbook(file_path, read_only=True)
            text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
        else:
            return "", "Unsupported file type"
        
        return clean_text(text), ""
    except Exception as e:
        return "", f"Extraction error: {e}"

def chunk_text(text, max_tokens=950):
    sentences = sent_tokenize(text)
    chunks, current_chunk = [], ""
    for sentence in sentences:
        if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens:
            current_chunk += " " + sentence
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence
    if current_chunk:
        chunks.append(current_chunk.strip())
    return chunks

def generate_summary(text, length="medium"):
    cache_key = hashlib.md5((text + length).encode()).hexdigest()
    if cache_key in summary_cache:
        return summary_cache[cache_key]

    params = {"short": (30, 80), "medium": (80, 200), "long": (210, 300)}[length]
    min_len, max_len = params

    chunks = chunk_text(text)
    summaries = summarizer(chunks, max_length=max_len, min_length=min_len, do_sample=False)
    final_summary = " ".join(s['summary_text'] for s in summaries)
    summary_cache[cache_key] = final_summary
    return final_summary

def text_to_speech(text):
    try:
        tts = gTTS(text)
        temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
        tts.save(temp_audio.name)
        return temp_audio.name
    except:
        return ""

def create_pdf(summary, original_filename):
    try:
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", 'B', 16)
        pdf.cell(200, 10, "Summary", ln=True, align='C')
        pdf.set_font("Arial", size=12)
        pdf.multi_cell(0, 10, summary)
        temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
        pdf.output(temp_pdf.name)
        return temp_pdf.name
    except:
        return ""