# app_logic.py from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, hashlib, datetime from nltk.tokenize import sent_tokenize from fpdf import FPDF from gtts import gTTS nltk.download('punkt', quiet=True) # Load once MODEL_NAME = "facebook/bart-large-cnn" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4) reader = easyocr.Reader(['en'], gpu=False) summary_cache = {} def clean_text(text): text = re.sub(r'\s+', ' ', text) text = re.sub(r'\u2022\s*|\d\.\s+', '', text) text = re.sub(r'\[.*?\]|\(.*?\)', '', text) text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) return text.strip() def extract_text(file_path, file_extension): try: if file_extension in ["pdf"]: with fitz.open(file_path) as doc: text = "\n".join(page.get_text("text") for page in doc) if len(text.strip()) < 50: images = [page.get_pixmap() for page in doc] temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) images[0].save(temp_img.name) ocr_result = reader.readtext(temp_img.name, detail=0) os.unlink(temp_img.name) text = "\n".join(ocr_result) if ocr_result else text elif file_extension in ["docx"]: doc = docx.Document(file_path) text = "\n".join(p.text for p in doc.paragraphs) elif file_extension in ["pptx"]: prs = pptx.Presentation(file_path) text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")) elif file_extension in ["xlsx"]: wb = openpyxl.load_workbook(file_path, read_only=True) text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]) else: return "", "Unsupported file type" return clean_text(text), "" except Exception as e: return "", f"Extraction error: {e}" def chunk_text(text, max_tokens=950): sentences = sent_tokenize(text) chunks, current_chunk = [], "" for sentence in sentences: if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens: current_chunk += " " + sentence else: chunks.append(current_chunk.strip()) current_chunk = sentence if current_chunk: chunks.append(current_chunk.strip()) return chunks def generate_summary(text, length="medium"): cache_key = hashlib.md5((text + length).encode()).hexdigest() if cache_key in summary_cache: return summary_cache[cache_key] params = {"short": (30, 80), "medium": (80, 200), "long": (210, 300)}[length] min_len, max_len = params chunks = chunk_text(text) summaries = summarizer(chunks, max_length=max_len, min_length=min_len, do_sample=False) final_summary = " ".join(s['summary_text'] for s in summaries) summary_cache[cache_key] = final_summary return final_summary def text_to_speech(text): try: tts = gTTS(text) temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") tts.save(temp_audio.name) return temp_audio.name except: return "" def create_pdf(summary, original_filename): try: pdf = FPDF() pdf.add_page() pdf.set_font("Arial", 'B', 16) pdf.cell(200, 10, "Summary", ln=True, align='C') pdf.set_font("Arial", size=12) pdf.multi_cell(0, 10, summary) temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") pdf.output(temp_pdf.name) return temp_pdf.name except: return ""