Spaces:
Running
Running
File size: 26,438 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 10e9b7d aa3be20 d92e384 aa3be20 ccad2ac aa3be20 1b7cdde aa3be20 b1628e5 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 f6a50f3 aa3be20 d59f015 e80aab9 3db6293 aa3be20 31243f4 d59f015 aa3be20 f6a50f3 aa3be20 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 aa3be20 0807843 aa3be20 b177367 31243f4 aa3be20 b1628e5 aa3be20 f6a50f3 aa3be20 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 f6a50f3 31243f4 aa3be20 f6a50f3 aa3be20 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 aa3be20 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 aa3be20 e514fd7 aa3be20 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 d6516e4 0807843 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 aa3be20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import asyncio
from google import genai
from google.adk.agents import Agent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.genai import types
from google.adk.tools import agent_tool
from google.adk.agents import Agent
from google.adk.tools import google_search, built_in_code_execution
from google.adk.agents import LlmAgent
from huggingface_hub import snapshot_download
from openpyxl import load_workbook
import warnings
# Ignore all warnings
warnings.filterwarnings("ignore")
import logging
logging.basicConfig(level=logging.ERROR)
# Load API KEYs
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
HUGGINGFACE_HUB_TOKEN = os.getenv('HUGGINGFACE_HUB_TOKEN')
# Agent Tools
coding_agent = LlmAgent(
model='gemini-2.0-flash',
name='CodeAgent',
instruction="""You are a calculator agent.
When given a mathematical expression, write and execute Python code to calculate the result.
Return only the final numerical result as plain text, without markdown or code blocks.
""",
description="Executes Python code to perform calculations.",
tools=[built_in_code_execution],
)
code_execution_agent = LlmAgent(
model='gemini-2.0-flash',
name='CodeAgent',
instruction="""
You're a specialist in Code Execution. Execute Python code to get the result.
Return only the final numerical result as plain text, without markdown or code blocks.
If you given the python code, do not add, subtract any codes from original one.
""",
description="Executes Python code. It will not generate code.",
tools=[built_in_code_execution],
)
search_agent = Agent(
name="basic_search_agent",
model="gemini-2.5-flash-preview-04-17",
description="Agent to answer questions using Google Search.",
instruction="I can answer your questions by searching the internet. Just ask me anything!",
# google_search is a pre-built tool which allows the agent to perform Google searches.
tools=[google_search]
)
# YouTube Tools
def understand_youtube_video(video_url: str, question: str) -> str:
"""
Given a YouTube video URL and question, this will use the Gemini API to analyze the video content and provide an answer.
Args:
video_url (str): The URL of the YouTube video you want to analyze (e.g. "https://www.youtube.com/watch?v=...").
If Gemini cannot handle this directly, you may need a different format, such as a GCS URI.
question (str): The specific question about the video content.
Returns:
str: The answer generated by the Gemini model based on the video and question.
Returns an error message if processing fails.
"""
print(f"--- Analyzing YouTube Video ---")
print(f"URL: {video_url}")
print(f"Question: {question}")
try:
client = genai.Client(api_key=GOOGLE_API_KEY)
model='models/gemini-2.0-flash',
response = client.models.generate_content(
model='models/gemini-2.0-flash',
contents=types.Content(
parts=[
types.Part(
file_data=types.FileData(file_uri=video_url)
),
types.Part(text=question)
]
)
)
print("--- Gemini Response Received ---")
if hasattr(response, 'text'):
print("Video Description : ", response.text)
return response.text
elif response.parts:
return "".join(part.text for part in response.parts if hasattr(part, 'text'))
else:
block_reason = ""
if response.prompt_feedback and response.prompt_feedback.block_reason:
block_reason = f" Reason: {response.prompt_feedback.block_reason.name}"
return f"Model did not return text content.{block_reason}"
except Exception as e:
print(f"Error processing YouTube video '{video_url}' with Gemini: {e}")
return f"Sorry, an error occurred while analyzing the video. Please check the URL and ensure the video is accessible. Error details: {str(e)}"
# Image Tools
def understand_image(image_file_name: str) -> str:
"""
Given an image file , this will analyze the image in detail and describe its contents in as much detail as possible.
Args:
image_file_name (str): The file name of the image to analyze.
Returns:
str: The response text generated by the Gemini model.
"""
print("--- Analyzing Image ---")
print(f"Image URL/Path: {image_file_name}")
prompt = """
Analyze the image in detail and describe its contents in as much detail as possible.
For example, give someone a chess board and describe where each piece is.
The description should include the following information:
- General overview of the image
- Details of important elements and features (e.g., location relationships, attributes, etc.)
- Identification of specific objects or characters (e.g., game piece names, positions, people, etc.)
# Steps
1. Examine the image as a whole and identify the main elements.
2. Examine each element in detail and identify what it is.
3. Develop a description of each element based on its characteristic relationships and positions.
4. Finally, summarize the overall scene or situation.
# Output Format
Provide detailed descriptions in paragraphs of text, using bullet points where necessary.
"""
try:
# Fetch the image data
if image_file_name.startswith("http"):
image_bytes = requests.get(image_file_name).content
else:
with open(image_file_name, "rb") as f:
image_bytes = f.read()
# Create image part
image_part = types.Part.from_bytes(
data=image_bytes,
mime_type="image/jpeg"
)
# Initialize the Gemini client
client = genai.Client(api_key=GOOGLE_API_KEY)
# Build contents with question text and image part
response = client.models.generate_content(
model="gemini-2.0-flash-exp",
contents=[
prompt,
image_part
]
)
print("--- Gemini Response Received ---")
# Extract text from the response
if hasattr(response, 'text'):
print("Image Description : ", response.text)
return response.text
elif getattr(response, 'parts', None):
return "".join(part.text for part in response.parts if hasattr(part, 'text'))
else:
block_reason = ""
if response.prompt_feedback and response.prompt_feedback.block_reason:
block_reason = f" Reason: {response.prompt_feedback.block_reason.name}"
return f"Model did not return text content.{block_reason}"
except Exception as e:
print(f"Error processing image '{image_file_name}' with Gemini: {e}")
return f"Sorry, an error occurred while analyzing the image. Please check the image URL or path. Error details: {str(e)}"
# Audio Tool
def transcribe_audio(audio_path: str) -> str:
"""
Given an audio file path or URL, uploads the file to Gemini API and generates a speech transcript.
Args:
audio_path (str): The URL or local file path of the audio to transcribe.
Returns:
str: A Markdown-formatted transcript of the speech, or an error message.
"""
print("--- Transcribing Audio ---")
print(f"Audio Path: {audio_path}")
try:
# Initialize Gemini client
client = genai.Client(api_key=GOOGLE_API_KEY)
# Upload the audio file
uploaded = client.files.upload(file=audio_path)
prompt = "Generate a transcript of the speech."
# Generate transcript
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, uploaded]
)
print("--- Gemini Response Received ---")
# Extract transcript text
if hasattr(response, 'text'):
transcript = response.text
elif getattr(response, 'parts', None):
transcript = "".join(part.text for part in response.parts if hasattr(part, 'text'))
else:
transcript = "Model did not return text content."
print("Transcript : ", transcript)
# Format as Markdown
markdown_transcript = (
"## Audio Transcription Result\n"
f"**Transcript:**\n{transcript}"
)
return markdown_transcript
except Exception as e:
error_msg = f"Error transcribing audio '{audio_path}': {str(e)}"
return f"**Error:** {error_msg}"
# Excel Tool
def excel_to_csv(excel_path: str) -> str:
"""
Given an Excel file path or URL and an optional sheet name,
reads the spreadsheet using openpyxl and returns its contents as CSV text.
Args:
excel_path (str): The URL or local file path of the Excel file to convert.
Returns:
str: The CSV-formatted content of the sheet.
"""
print("--- Converting Excel to CSV ---")
print(f"Excel Path: {excel_path}")
excel_path = os.path.join("./GAIA_resource/", excel_path)
try:
wb = load_workbook(filename=excel_path, data_only=True)
# Select worksheet
ws = wb.active
# Build CSV lines manually
lines = []
for row in ws.iter_rows(values_only=True):
# Convert each cell to string, using empty string for None
str_cells = ["" if cell is None else str(cell) for cell in row]
# Join cells with commas
line = ",".join(str_cells)
lines.append(line)
# Combine all lines into one CSV string
print("Converted Excel to CSV result : ", lines)
return "\n".join(lines)
except Exception as e:
return f"Error converting Excel to CSV: {e}"
data_analyzer_agent = LlmAgent(
model="gemini-2.5-flash-preview-04-17",
name="data_analyzer_agent",
description="When data is provided, analyze it and derive an appropriate answer.",
instruction="""
# Steps
1. **Data Review**: Understand the data provided and understand what it shows.
2. **Prepare for Analysis**: If necessary, clean the data and prepare it for analysis.
3. **Data Analysis**: Analyze the data using appropriate methods to find meaningful information and trends.
4. **Interpretation**: Interpret the analysis results to answer questions and doubts.
5. **Present Conclusions**: Present your conclusions and insights in a logical summary.
# Output Format
- State your conclusions in a short sentence, but make sure they are clear and specific.
- If necessary, use tables and graphs to provide additional information.
# Examples
- **Input Data**:
- Survey data on age, gender, occupation, and annual income
- **Analysis Results**:
- The older the person, the higher the annual income tends to be.
- **Statement of conclusion**:
- "The survey data shows that the older you are, the higher your average annual income is."
# Notes
- If your data set is very large, consider using sample data or segmenting your data for analysis.
- Distinguish between qualitative and quantitative data and choose the appropriate analysis method for each.
""",
tools=[excel_to_csv] # Provide the function directly
)
# Read text file
def LoadTextFileTool(file_path: str) -> str:
"""
This tool loads any text file
Args:
file_path (str): File Path
Returns:
str: Text file contents.
"""
print("---Load Text File Tool---")
print("File Path : ", file_path)
try:
# Decode bytes to ASCII string, replacing errors
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
return f"Error reading text file: {e}"
# Get task file
def GetTaskFileTool(file_name: str, task_id: str) -> str:
"""
This tool downloads the file content associated with the given task_id if exists. Returns absolute file path.
Args:
task_id (str): Task id
file_name (str) File name
Returns:
str: absolute file path
"""
print("---Get Task File Tool---")
print("File Name : ", file_name)
try:
response = requests.get(f"{DEFAULT_API_URL}/files/{task_id}", timeout=15)
response.raise_for_status()
with open(file_name, 'wb') as file:
file.write(response.content)
return os.path.abspath(file_name)
except TypeError as e:
return f"Error GetTaskFileTool '{file_name}' : {str(e)}"
except Exception as e:
return f"Error reading file: {e}"
# Call Agent Async
async def call_agent_async(query: str, runner, user_id, session_id):
"""Sends a query to the agent and prints the final response."""
print(f"\n>>> User Query: {query}")
# Prepare the user's message in ADK format
content = types.Content(role='user', parts=[types.Part(text=query)])
final_response_text = "Agent did not produce a final response." # Default
# Key Concept: run_async executes the agent logic and yields Events.
# We iterate through events to find the final answer.
async for event in runner.run_async(user_id=user_id, session_id=session_id, new_message=content):
# Key Concept: is_final_response() marks the concluding message for the turn.
if event.is_final_response():
if event.content and event.content.parts:
# Assuming text response in the first part
final_response_text = event.content.parts[0].text
elif event.actions and event.actions.escalate: # Handle potential errors/escalations
final_response_text = f"Agent escalated: {event.error_message or 'No specific message.'}"
# Add more checks here if needed (e.g., specific error codes)
break # Stop processing events once the final response is found
print(f"<<< Agent Response: {final_response_text}")
return final_response_text # Return the final response text
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
#class BasicAgent:
# def __init__(self):
# print("BasicAgent initialized.")
# def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# #fixed_answer = "This is a default answer."
# #print(f"Agent returning fixed answer: {fixed_answer}")
#
# return fixed_answer
description_text = """
You are GAIA Solver, a highly capable AI assistant designed to answer questions from the GAIA benchmark accurately and concisely using a suite of available tools. Your goal is to provide the precise answer in the requested format based *only* on the provided question text.
"""
instruction_text = """
Thinking Process:
1. **Analyze Question & Identify Files:** Carefully read the question. Determine the core task and the **exact final answer format**. Check if the question explicitly mentions an attached file (image, Excel, audio, code).
2. **Identify Filename:** If a file is mentioned, identify its filename from the text (e.g., "Homework.mp3", "image.png"). If no specific filename is given for a required file type, state that you need the filename. **Do not guess filenames.**
3. **Plan:** Create a step-by-step plan using tools. If a file is needed, include the correct tool call with the identified filename.
4. **Execute & Refine:** Execute the plan. Pass correct arguments (especially filenames). Evaluate tool outputs. If errors occur (e.g., file not found, API errors) or info is insufficient, revise the plan (e.g., use different tool prompts).
5. **Synthesize Answer:** Combine information. Use `coding_agent` for final formatting/calculations.
6. **Final Output:** Generate **only the final answer** in the requested format. No extra text. If the answer cannot be found or a required filename was missing/invalid, output: "I could not find the answer."
Constraints:
- Base actions *only* on the provided question text.
- Adhere strictly to the requested output format.
"""
async def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 0. Download GAIA data
#try:
# download_gaia_validation()
#except Exception as e:
# err = f"Error downloading GAIA validation data: {e}"
# print(err)
# return err, None
# 1. Instantiate Agent ( modify this part to create your agent)
try:
root_agent = Agent(
name = "root_agent",
model = "gemini-2.5-pro-preview-03-25",
description = description_text,
instruction = instruction_text,
tools = [
agent_tool.AgentTool(agent=search_agent),
agent_tool.AgentTool(agent=coding_agent),
agent_tool.AgentTool(agent=code_execution_agent),
understand_youtube_video,
understand_image,
transcribe_audio,
excel_to_csv,
GetTaskFileTool,
LoadTextFileTool,
]
)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
if task_id:
question_text += " task_id = " + task_id
if file_name:
question_text += " file_name = " + file_name
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
APP_NAME = "gaia_agent"
USER_ID = "user_1"
SESSION_ID = item.get("task_id")
session_service = InMemorySessionService()
session = session_service.create_session(
app_name=APP_NAME,
user_id=USER_ID,
session_id=SESSION_ID
)
runner = Runner(
agent=root_agent, # The agent we want to run
app_name=APP_NAME, # Associates runs with our app
session_service=session_service # Uses our session manager
)
submitted_answer = await call_agent_async(question_text,
runner=runner,
user_id=USER_ID,
session_id=SESSION_ID)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Introduction:**
This is an agent for GAIA benchmark.
Built with Google ADK (Agent Development Kit)
**Instructions:**
Log in to your Hugging Face account using the button below. This uses your HF username for submission.
Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
demo.queue()
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|