Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,25 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
|
|
|
7 |
# --- Constants ---
|
8 |
-
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/"
|
9 |
|
10 |
# --- Basic Agent Definition ---
|
11 |
-
## This is where you should implement your own agent and tools
|
12 |
-
|
13 |
class BasicAgent:
|
14 |
-
|
15 |
-
A very simple agent placeholder.
|
16 |
-
It just returns a fixed string for any question.
|
17 |
-
"""
|
18 |
def __init__(self):
|
19 |
print("BasicAgent initialized.")
|
20 |
-
# Add any setup if needed
|
21 |
-
|
22 |
def __call__(self, question: str) -> str:
|
23 |
-
"""
|
24 |
-
The agent's logic to answer a question.
|
25 |
-
This basic version ignores the question content.
|
26 |
-
"""
|
27 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
28 |
-
# Replace this with actual logic if you were building a real agent
|
29 |
fixed_answer = "This is a default answer."
|
30 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
31 |
return fixed_answer
|
32 |
-
|
33 |
-
# __repr__ seems intended to get the *source* code, not just representation
|
34 |
-
# Let's keep it but note that get_current_script_content might be more robust
|
35 |
-
# if the class definition changes significantly or relies on external state.
|
36 |
def __repr__(self) -> str:
|
37 |
-
""
|
38 |
-
Return the source code required to reconstruct this agent.
|
39 |
-
NOTE: This might be brittle. Using get_current_script_content is likely safer.
|
40 |
-
"""
|
41 |
-
imports = [
|
42 |
-
"import inspect\n"
|
43 |
-
]
|
44 |
try:
|
45 |
class_source = inspect.getsource(BasicAgent)
|
46 |
full_source = "\n".join(imports) + "\n" + class_source
|
@@ -51,17 +30,14 @@ class BasicAgent:
|
|
51 |
|
52 |
# --- Gradio UI and Logic ---
|
53 |
def get_current_script_content() -> str:
|
54 |
-
|
55 |
try:
|
56 |
-
# __file__ holds the path to the current script
|
57 |
script_path = os.path.abspath(__file__)
|
58 |
print(f"Reading script content from: {script_path}")
|
59 |
with open(script_path, 'r', encoding='utf-8') as f:
|
60 |
return f.read()
|
61 |
except NameError:
|
62 |
-
# __file__ is not defined (e.g., running in an interactive interpreter or frozen app)
|
63 |
print("Warning: __file__ is not defined. Cannot read script content this way.")
|
64 |
-
# Fallback or alternative method could be added here if needed
|
65 |
return "# Agent code unavailable: __file__ not defined"
|
66 |
except FileNotFoundError:
|
67 |
print(f"Warning: Script file '{script_path}' not found.")
|
@@ -76,17 +52,27 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
76 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
77 |
and displays the results.
|
78 |
"""
|
79 |
-
# --- Determine HF Space URL and
|
80 |
space_host = os.getenv("SPACE_HOST")
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
if space_host:
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
|
86 |
-
# Print runtime info at the start
|
87 |
print("\n" + "="*60)
|
88 |
print("Executing run_and_submit_all function...")
|
89 |
-
print(
|
|
|
|
|
90 |
# --- End Environment Info ---
|
91 |
|
92 |
if profile:
|
@@ -94,110 +80,80 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
94 |
print(f"User logged in: {username}")
|
95 |
else:
|
96 |
print("User not logged in.")
|
97 |
-
print("="*60 + "\n")
|
98 |
-
return "Please Login to Hugging Face with the button.", None
|
99 |
|
100 |
-
print("="*60 + "\n")
|
101 |
|
|
|
102 |
api_url = DEFAULT_API_URL
|
103 |
questions_url = f"{api_url}/questions"
|
104 |
submit_url = f"{api_url}/submit"
|
105 |
|
106 |
-
# 1. Instantiate
|
107 |
try:
|
108 |
agent = BasicAgent()
|
109 |
-
# Using get_current_script_content() is likely more reliable for submission
|
110 |
-
# agent_code = agent.__repr__() # Keep if needed, but prefer file content
|
111 |
-
# print(f"Agent Code via __repr__ (first 200): {agent_code[:200]}...") # Debug
|
112 |
except Exception as e:
|
113 |
print(f"Error instantiating agent: {e}")
|
114 |
return f"Error initializing agent: {e}", None
|
115 |
-
|
116 |
-
# Get agent code by reading the current script file - generally more robust
|
117 |
agent_code = get_current_script_content()
|
118 |
if agent_code.startswith("# Agent code unavailable"):
|
119 |
print("Warning: Using potentially incomplete agent code due to reading error.")
|
120 |
-
# Optional: Fall back to agent.__repr__() if needed
|
121 |
-
# agent_code = agent.__repr__()
|
122 |
|
123 |
-
# 2. Fetch
|
124 |
print(f"Fetching questions from: {questions_url}")
|
125 |
try:
|
126 |
response = requests.get(questions_url, timeout=15)
|
127 |
-
response.raise_for_status()
|
128 |
questions_data = response.json()
|
129 |
if not questions_data:
|
130 |
print("Fetched questions list is empty.")
|
131 |
return "Fetched questions list is empty or invalid format.", None
|
132 |
print(f"Fetched {len(questions_data)} questions.")
|
133 |
-
# status_update = f"Fetched {len(questions_data)} questions. Running agent..." # For yield/streaming
|
134 |
except requests.exceptions.RequestException as e:
|
135 |
print(f"Error fetching questions: {e}")
|
136 |
return f"Error fetching questions: {e}", None
|
137 |
except requests.exceptions.JSONDecodeError as e:
|
138 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
139 |
-
print(f"Response text: {response.text[:500]}")
|
140 |
return f"Error decoding server response for questions: {e}", None
|
141 |
-
except Exception as e:
|
142 |
print(f"An unexpected error occurred fetching questions: {e}")
|
143 |
return f"An unexpected error occurred fetching questions: {e}", None
|
144 |
|
145 |
-
# 3. Run Agent
|
146 |
-
results_log = []
|
147 |
-
answers_payload = []
|
148 |
print(f"Running agent on {len(questions_data)} questions...")
|
149 |
for item in questions_data:
|
150 |
task_id = item.get("task_id")
|
151 |
question_text = item.get("question")
|
152 |
-
|
153 |
if not task_id or question_text is None:
|
154 |
print(f"Skipping item with missing task_id or question: {item}")
|
155 |
continue
|
156 |
-
|
157 |
try:
|
158 |
-
submitted_answer = agent(question_text)
|
159 |
-
answers_payload.append({
|
160 |
-
|
161 |
-
"submitted_answer": submitted_answer
|
162 |
-
})
|
163 |
-
results_log.append({
|
164 |
-
"Task ID": task_id,
|
165 |
-
"Question": question_text,
|
166 |
-
"Submitted Answer": submitted_answer
|
167 |
-
})
|
168 |
except Exception as e:
|
169 |
print(f"Error running agent on task {task_id}: {e}")
|
170 |
-
results_log.append({
|
171 |
-
"Task ID": task_id,
|
172 |
-
"Question": question_text,
|
173 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
174 |
-
})
|
175 |
-
# Decide if you want to submit agent errors or skip:
|
176 |
-
# answers_payload.append({"task_id": task_id, "submitted_answer": f"AGENT ERROR: {e}"})
|
177 |
|
178 |
if not answers_payload:
|
179 |
print("Agent did not produce any answers to submit.")
|
180 |
-
# Still show results log even if nothing submitted
|
181 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
182 |
|
183 |
# 4. Prepare Submission
|
184 |
-
submission_data = {
|
185 |
-
"username": username.strip(),
|
186 |
-
"agent_code": agent_code, # Using the code read from file
|
187 |
-
"answers": answers_payload
|
188 |
-
}
|
189 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
190 |
print(status_update)
|
191 |
|
192 |
-
# 5. Submit
|
193 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
194 |
try:
|
195 |
-
|
196 |
-
response = requests.post(submit_url, json=submission_data, timeout=60) # Increased timeout further
|
197 |
response.raise_for_status()
|
198 |
result_data = response.json()
|
199 |
-
|
200 |
-
# Prepare final status message and results table
|
201 |
final_status = (
|
202 |
f"Submission Successful!\n"
|
203 |
f"User: {result_data.get('username')}\n"
|
@@ -208,19 +164,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
208 |
print("Submission successful.")
|
209 |
results_df = pd.DataFrame(results_log)
|
210 |
return final_status, results_df
|
211 |
-
|
212 |
except requests.exceptions.HTTPError as e:
|
213 |
error_detail = f"Server responded with status {e.response.status_code}."
|
214 |
try:
|
215 |
-
# Try to get more specific error detail from JSON response body
|
216 |
error_json = e.response.json()
|
217 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
218 |
except requests.exceptions.JSONDecodeError:
|
219 |
-
|
220 |
-
error_detail += f" Response: {e.response.text[:500]}" # Limit length
|
221 |
status_message = f"Submission Failed: {error_detail}"
|
222 |
print(status_message)
|
223 |
-
results_df = pd.DataFrame(results_log)
|
224 |
return status_message, results_df
|
225 |
except requests.exceptions.Timeout:
|
226 |
status_message = "Submission Failed: The request timed out."
|
@@ -232,7 +185,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
232 |
print(status_message)
|
233 |
results_df = pd.DataFrame(results_log)
|
234 |
return status_message, results_df
|
235 |
-
except Exception as e:
|
236 |
status_message = f"An unexpected error occurred during submission: {e}"
|
237 |
print(status_message)
|
238 |
results_df = pd.DataFrame(results_log)
|
@@ -243,7 +196,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
243 |
with gr.Blocks() as demo:
|
244 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
245 |
gr.Markdown(
|
246 |
-
"Please clone this space, then modify the code to define your agent's logic within the `BasicAgent` class. "
|
247 |
"Log in to your Hugging Face account using the button below. This uses your HF username for submission. "
|
248 |
"Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score."
|
249 |
)
|
@@ -253,28 +206,34 @@ with gr.Blocks() as demo:
|
|
253 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
254 |
|
255 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
256 |
-
|
|
|
257 |
|
258 |
-
# --- Component Interaction ---
|
259 |
-
# Use the profile information directly from the LoginButton state (implicitly passed)
|
260 |
run_button.click(
|
261 |
fn=run_and_submit_all,
|
262 |
-
# Input is implicitly the profile data from LoginButton state
|
263 |
outputs=[status_output, results_table]
|
264 |
)
|
265 |
|
266 |
if __name__ == "__main__":
|
267 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
268 |
-
# Check for SPACE_HOST at startup for information
|
269 |
space_host_startup = os.getenv("SPACE_HOST")
|
|
|
|
|
270 |
if space_host_startup:
|
271 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
272 |
-
print(f"
|
273 |
else:
|
274 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
277 |
|
278 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
279 |
-
# Set share=False as the primary access point is the HF Space URL
|
280 |
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
+
# (Keep Constants and BasicAgent class as is)
|
8 |
# --- Constants ---
|
9 |
+
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/"
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
|
|
|
|
12 |
class BasicAgent:
|
13 |
+
# ... (keep agent code as is) ...
|
|
|
|
|
|
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
|
|
|
|
16 |
def __call__(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
18 |
fixed_answer = "This is a default answer."
|
19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
return fixed_answer
|
|
|
|
|
|
|
|
|
21 |
def __repr__(self) -> str:
|
22 |
+
imports = ["import inspect\n"]
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
class_source = inspect.getsource(BasicAgent)
|
25 |
full_source = "\n".join(imports) + "\n" + class_source
|
|
|
30 |
|
31 |
# --- Gradio UI and Logic ---
|
32 |
def get_current_script_content() -> str:
|
33 |
+
# ... (keep function as is) ...
|
34 |
try:
|
|
|
35 |
script_path = os.path.abspath(__file__)
|
36 |
print(f"Reading script content from: {script_path}")
|
37 |
with open(script_path, 'r', encoding='utf-8') as f:
|
38 |
return f.read()
|
39 |
except NameError:
|
|
|
40 |
print("Warning: __file__ is not defined. Cannot read script content this way.")
|
|
|
41 |
return "# Agent code unavailable: __file__ not defined"
|
42 |
except FileNotFoundError:
|
43 |
print(f"Warning: Script file '{script_path}' not found.")
|
|
|
52 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
53 |
and displays the results.
|
54 |
"""
|
55 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
56 |
space_host = os.getenv("SPACE_HOST")
|
57 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID
|
58 |
+
|
59 |
+
hf_runtime_url = "Runtime: Locally or unknown environment (SPACE_HOST not found)"
|
60 |
+
hf_repo_url = "HF Repo URL: Unknown (SPACE_ID not found)"
|
61 |
+
hf_repo_tree_url = "HF Repo Tree URL: Unknown (SPACE_ID not found)"
|
62 |
+
|
63 |
if space_host:
|
64 |
+
hf_runtime_url = f"Runtime URL: https://{space_host}.hf.space"
|
65 |
+
|
66 |
+
if space_id: # Construct URLs using SPACE_ID
|
67 |
+
hf_repo_url = f"HF Repo URL: https://huggingface.co/spaces/{space_id}"
|
68 |
+
hf_repo_tree_url = f"HF Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main"
|
69 |
|
70 |
+
# Print runtime and repo info at the start
|
71 |
print("\n" + "="*60)
|
72 |
print("Executing run_and_submit_all function...")
|
73 |
+
print(hf_runtime_url) # Print the runtime URL (from SPACE_HOST)
|
74 |
+
print(hf_repo_url) # Print the base repo URL (from SPACE_ID)
|
75 |
+
print(hf_repo_tree_url) # Print the repo tree URL (from SPACE_ID)
|
76 |
# --- End Environment Info ---
|
77 |
|
78 |
if profile:
|
|
|
80 |
print(f"User logged in: {username}")
|
81 |
else:
|
82 |
print("User not logged in.")
|
83 |
+
print("="*60 + "\n")
|
84 |
+
return "Please Login to Hugging Face with the button.", None
|
85 |
|
86 |
+
print("="*60 + "\n")
|
87 |
|
88 |
+
# ... (rest of the function remains the same) ...
|
89 |
api_url = DEFAULT_API_URL
|
90 |
questions_url = f"{api_url}/questions"
|
91 |
submit_url = f"{api_url}/submit"
|
92 |
|
93 |
+
# 1. Instantiate Agent
|
94 |
try:
|
95 |
agent = BasicAgent()
|
|
|
|
|
|
|
96 |
except Exception as e:
|
97 |
print(f"Error instantiating agent: {e}")
|
98 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
99 |
agent_code = get_current_script_content()
|
100 |
if agent_code.startswith("# Agent code unavailable"):
|
101 |
print("Warning: Using potentially incomplete agent code due to reading error.")
|
|
|
|
|
102 |
|
103 |
+
# 2. Fetch Questions
|
104 |
print(f"Fetching questions from: {questions_url}")
|
105 |
try:
|
106 |
response = requests.get(questions_url, timeout=15)
|
107 |
+
response.raise_for_status()
|
108 |
questions_data = response.json()
|
109 |
if not questions_data:
|
110 |
print("Fetched questions list is empty.")
|
111 |
return "Fetched questions list is empty or invalid format.", None
|
112 |
print(f"Fetched {len(questions_data)} questions.")
|
|
|
113 |
except requests.exceptions.RequestException as e:
|
114 |
print(f"Error fetching questions: {e}")
|
115 |
return f"Error fetching questions: {e}", None
|
116 |
except requests.exceptions.JSONDecodeError as e:
|
117 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
118 |
+
print(f"Response text: {response.text[:500]}")
|
119 |
return f"Error decoding server response for questions: {e}", None
|
120 |
+
except Exception as e:
|
121 |
print(f"An unexpected error occurred fetching questions: {e}")
|
122 |
return f"An unexpected error occurred fetching questions: {e}", None
|
123 |
|
124 |
+
# 3. Run Agent
|
125 |
+
results_log = []
|
126 |
+
answers_payload = []
|
127 |
print(f"Running agent on {len(questions_data)} questions...")
|
128 |
for item in questions_data:
|
129 |
task_id = item.get("task_id")
|
130 |
question_text = item.get("question")
|
|
|
131 |
if not task_id or question_text is None:
|
132 |
print(f"Skipping item with missing task_id or question: {item}")
|
133 |
continue
|
|
|
134 |
try:
|
135 |
+
submitted_answer = agent(question_text)
|
136 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
137 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
except Exception as e:
|
139 |
print(f"Error running agent on task {task_id}: {e}")
|
140 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
if not answers_payload:
|
143 |
print("Agent did not produce any answers to submit.")
|
|
|
144 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
145 |
|
146 |
# 4. Prepare Submission
|
147 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
148 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
149 |
print(status_update)
|
150 |
|
151 |
+
# 5. Submit
|
152 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
153 |
try:
|
154 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
155 |
response.raise_for_status()
|
156 |
result_data = response.json()
|
|
|
|
|
157 |
final_status = (
|
158 |
f"Submission Successful!\n"
|
159 |
f"User: {result_data.get('username')}\n"
|
|
|
164 |
print("Submission successful.")
|
165 |
results_df = pd.DataFrame(results_log)
|
166 |
return final_status, results_df
|
|
|
167 |
except requests.exceptions.HTTPError as e:
|
168 |
error_detail = f"Server responded with status {e.response.status_code}."
|
169 |
try:
|
|
|
170 |
error_json = e.response.json()
|
171 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
172 |
except requests.exceptions.JSONDecodeError:
|
173 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
|
|
174 |
status_message = f"Submission Failed: {error_detail}"
|
175 |
print(status_message)
|
176 |
+
results_df = pd.DataFrame(results_log)
|
177 |
return status_message, results_df
|
178 |
except requests.exceptions.Timeout:
|
179 |
status_message = "Submission Failed: The request timed out."
|
|
|
185 |
print(status_message)
|
186 |
results_df = pd.DataFrame(results_log)
|
187 |
return status_message, results_df
|
188 |
+
except Exception as e:
|
189 |
status_message = f"An unexpected error occurred during submission: {e}"
|
190 |
print(status_message)
|
191 |
results_df = pd.DataFrame(results_log)
|
|
|
196 |
with gr.Blocks() as demo:
|
197 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
198 |
gr.Markdown(
|
199 |
+
"Please clone this space, then modify the code to define your agent's logic within the `BasicAgent` class. "
|
200 |
"Log in to your Hugging Face account using the button below. This uses your HF username for submission. "
|
201 |
"Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score."
|
202 |
)
|
|
|
206 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
207 |
|
208 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
209 |
+
# Removed max_rows=10 from DataFrame constructor
|
210 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
211 |
|
|
|
|
|
212 |
run_button.click(
|
213 |
fn=run_and_submit_all,
|
|
|
214 |
outputs=[status_output, results_table]
|
215 |
)
|
216 |
|
217 |
if __name__ == "__main__":
|
218 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
219 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
220 |
space_host_startup = os.getenv("SPACE_HOST")
|
221 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
222 |
+
|
223 |
if space_host_startup:
|
224 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
225 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
226 |
else:
|
227 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
228 |
+
|
229 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
230 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
231 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
232 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
233 |
+
else:
|
234 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
235 |
+
|
236 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
237 |
|
238 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
|
|
239 |
demo.launch(debug=True, share=False)
|