Spaces:
Running
Running
Implement GAIA Solver with enhanced agent capabilities and tool integration
Browse files- Added Google ADK agents for code execution, search, and data analysis.
- Integrated YouTube video analysis and image understanding tools.
- Developed audio transcription and Excel to CSV conversion functionalities.
- Established asynchronous agent call mechanism for improved performance.
- Configured environment variable loading for API keys.
- Created a structured approach for handling user queries and file inputs.
- Enhanced error handling and logging throughout the application.
- Updated requirements.txt to include necessary libraries.
- Added .gitignore to exclude unnecessary files and directories.
- .gitignore +147 -0
- __init__.py +1 -0
- agent.py +530 -0
- app.py +489 -16
- excel_test.py +52 -0
- requirements.txt +4 -1
.gitignore
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# PEP 582; used by PDM, PEP 582 compatible tools and project workflow
|
88 |
+
__pypackages__/
|
89 |
+
|
90 |
+
# Celery stuff
|
91 |
+
celerybeat-schedule
|
92 |
+
celerybeat.pid
|
93 |
+
|
94 |
+
# SageMath parsed files
|
95 |
+
*.sage.py
|
96 |
+
|
97 |
+
# Environments
|
98 |
+
.env
|
99 |
+
.venv
|
100 |
+
env/
|
101 |
+
venv/
|
102 |
+
ENV/
|
103 |
+
env.bak/
|
104 |
+
venv.bak/
|
105 |
+
|
106 |
+
# Spyder project settings
|
107 |
+
.spyderproject
|
108 |
+
.spyproject
|
109 |
+
|
110 |
+
# Rope project settings
|
111 |
+
.ropeproject
|
112 |
+
|
113 |
+
# mkdocs documentation
|
114 |
+
/site
|
115 |
+
|
116 |
+
# mypy
|
117 |
+
.mypy_cache/
|
118 |
+
.dmypy.json
|
119 |
+
dmypy.json
|
120 |
+
|
121 |
+
# Pyre type checker
|
122 |
+
.pyre/
|
123 |
+
|
124 |
+
# pytype static analysis results
|
125 |
+
.pytype/
|
126 |
+
|
127 |
+
# Cython debug symbols
|
128 |
+
cython_debug/
|
129 |
+
|
130 |
+
# VS Code settings folder
|
131 |
+
.vscode/
|
132 |
+
|
133 |
+
# IDE specific files (JetBrains, Sublime Text, etc.)
|
134 |
+
.idea/
|
135 |
+
*.iml
|
136 |
+
*.sublime-project
|
137 |
+
*.sublime-workspace
|
138 |
+
|
139 |
+
# OS generated files
|
140 |
+
.DS_Store
|
141 |
+
Thumbs.db
|
142 |
+
|
143 |
+
# Sensitive credentials - Add the specific path from your .env file
|
144 |
+
/path/to/your/google_cloud_credentials.json
|
145 |
+
|
146 |
+
# Add any other files or directories specific to your project below
|
147 |
+
# e.g., logs/, temp/, data/
|
__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import agent
|
agent.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import inspect
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
import asyncio
|
8 |
+
|
9 |
+
from google import genai
|
10 |
+
from google.adk.agents import Agent
|
11 |
+
from google.adk.runners import Runner
|
12 |
+
from google.adk.sessions import InMemorySessionService
|
13 |
+
from google.genai import types
|
14 |
+
from google.adk.tools import agent_tool
|
15 |
+
from google.adk.agents import Agent
|
16 |
+
from google.adk.tools import google_search, built_in_code_execution
|
17 |
+
from google.adk.agents import LlmAgent
|
18 |
+
|
19 |
+
from openpyxl import load_workbook
|
20 |
+
|
21 |
+
import warnings
|
22 |
+
# Ignore all warnings
|
23 |
+
warnings.filterwarnings("ignore")
|
24 |
+
|
25 |
+
import logging
|
26 |
+
logging.basicConfig(level=logging.ERROR)
|
27 |
+
|
28 |
+
# Load API KEYs
|
29 |
+
from dotenv import load_dotenv
|
30 |
+
load_dotenv()
|
31 |
+
GOOGLE_API_KEY = os.environ['GOOGLE_API_KEY']
|
32 |
+
|
33 |
+
|
34 |
+
# Agent Tools
|
35 |
+
coding_agent = LlmAgent(
|
36 |
+
model='gemini-2.0-flash',
|
37 |
+
name='CodeAgent',
|
38 |
+
instruction="""You are a calculator agent.
|
39 |
+
When given a mathematical expression, write and execute Python code to calculate the result.
|
40 |
+
Return only the final numerical result as plain text, without markdown or code blocks.
|
41 |
+
""",
|
42 |
+
description="Executes Python code to perform calculations.",
|
43 |
+
tools=[built_in_code_execution],
|
44 |
+
)
|
45 |
+
|
46 |
+
code_execution_agent = LlmAgent(
|
47 |
+
model='gemini-2.0-flash',
|
48 |
+
name='CodeAgent',
|
49 |
+
instruction="""
|
50 |
+
You're a specialist in Code Execution. Execute Python code to get the result.
|
51 |
+
Return only the final numerical result as plain text, without markdown or code blocks.
|
52 |
+
|
53 |
+
If you given the python code, do not add, subtract any codes from original one.
|
54 |
+
""",
|
55 |
+
description="Executes Python code. It will not generate code.",
|
56 |
+
tools=[built_in_code_execution],
|
57 |
+
)
|
58 |
+
|
59 |
+
search_agent = Agent(
|
60 |
+
name="basic_search_agent",
|
61 |
+
model="gemini-2.0-flash",
|
62 |
+
description="Agent to answer questions using Google Search.",
|
63 |
+
instruction="I can answer your questions by searching the internet. Just ask me anything!",
|
64 |
+
# google_search is a pre-built tool which allows the agent to perform Google searches.
|
65 |
+
tools=[google_search]
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
# YouTube Tools
|
70 |
+
def understand_youtube_video(video_url: str, question: str) -> str:
|
71 |
+
"""
|
72 |
+
Given a YouTube video URL and question, this will use the Gemini API to analyze the video content and provide an answer.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
video_url (str): The URL of the YouTube video you want to analyze (e.g. "https://www.youtube.com/watch?v=...").
|
76 |
+
If Gemini cannot handle this directly, you may need a different format, such as a GCS URI.
|
77 |
+
question (str): The specific question about the video content.
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
str: The answer generated by the Gemini model based on the video and question.
|
81 |
+
Returns an error message if processing fails.
|
82 |
+
|
83 |
+
"""
|
84 |
+
print(f"--- Analyzing YouTube Video ---")
|
85 |
+
print(f"URL: {video_url}")
|
86 |
+
print(f"Question: {question}")
|
87 |
+
|
88 |
+
try:
|
89 |
+
client = genai.Client(api_key=GOOGLE_API_KEY)
|
90 |
+
model='models/gemini-2.0-flash',
|
91 |
+
|
92 |
+
response = client.models.generate_content(
|
93 |
+
model='models/gemini-2.0-flash',
|
94 |
+
contents=types.Content(
|
95 |
+
parts=[
|
96 |
+
types.Part(
|
97 |
+
file_data=types.FileData(file_uri=video_url)
|
98 |
+
),
|
99 |
+
types.Part(text=question)
|
100 |
+
]
|
101 |
+
)
|
102 |
+
)
|
103 |
+
|
104 |
+
print("--- Gemini Response Received ---")
|
105 |
+
if hasattr(response, 'text'):
|
106 |
+
return response.text
|
107 |
+
elif response.parts:
|
108 |
+
return "".join(part.text for part in response.parts if hasattr(part, 'text'))
|
109 |
+
else:
|
110 |
+
block_reason = ""
|
111 |
+
if response.prompt_feedback and response.prompt_feedback.block_reason:
|
112 |
+
block_reason = f" Reason: {response.prompt_feedback.block_reason.name}"
|
113 |
+
return f"Model did not return text content.{block_reason}"
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Error processing YouTube video '{video_url}' with Gemini: {e}")
|
116 |
+
return f"Sorry, an error occurred while analyzing the video. Please check the URL and ensure the video is accessible. Error details: {str(e)}"
|
117 |
+
|
118 |
+
|
119 |
+
# Image Tools
|
120 |
+
def understand_image(image_file_name: str) -> str:
|
121 |
+
"""
|
122 |
+
Given an image file , this will analyze the image in detail and describe its contents in as much detail as possible.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
image_file_name (str): The file name of the image to analyze. Which given as "file_name" parameter in the question.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
str: The response text generated by the Gemini model.
|
129 |
+
"""
|
130 |
+
image_url = os.path.join("./GAIA_resource/" , image_file_name)
|
131 |
+
print("--- Analyzing Image ---")
|
132 |
+
print(f"Image URL/Path: {image_url}")
|
133 |
+
|
134 |
+
prompt = """
|
135 |
+
Analyze the image in detail and describe its contents in as much detail as possible.
|
136 |
+
For example, give someone a chess board and describe where each piece is.
|
137 |
+
|
138 |
+
The description should include the following information:
|
139 |
+
- General overview of the image
|
140 |
+
- Details of important elements and features (e.g., location relationships, attributes, etc.)
|
141 |
+
- Identification of specific objects or characters (e.g., game piece names, positions, people, etc.)
|
142 |
+
|
143 |
+
# Steps
|
144 |
+
1. Examine the image as a whole and identify the main elements.
|
145 |
+
2. Examine each element in detail and identify what it is.
|
146 |
+
3. Develop a description of each element based on its characteristic relationships and positions.
|
147 |
+
4. Finally, summarize the overall scene or situation.
|
148 |
+
|
149 |
+
# Output Format
|
150 |
+
Provide detailed descriptions in paragraphs of text, using bullet points where necessary.
|
151 |
+
|
152 |
+
"""
|
153 |
+
|
154 |
+
try:
|
155 |
+
# Fetch the image data
|
156 |
+
if image_url.startswith("http"):
|
157 |
+
image_bytes = requests.get(image_url).content
|
158 |
+
else:
|
159 |
+
with open(image_url, "rb") as f:
|
160 |
+
image_bytes = f.read()
|
161 |
+
|
162 |
+
# Create image part
|
163 |
+
image_part = types.Part.from_bytes(
|
164 |
+
data=image_bytes,
|
165 |
+
mime_type="image/jpeg"
|
166 |
+
)
|
167 |
+
|
168 |
+
# Initialize the Gemini client
|
169 |
+
client = genai.Client(api_key=GOOGLE_API_KEY)
|
170 |
+
# Build contents with question text and image part
|
171 |
+
response = client.models.generate_content(
|
172 |
+
model="gemini-2.0-flash-exp",
|
173 |
+
contents=[
|
174 |
+
prompt,
|
175 |
+
image_part
|
176 |
+
]
|
177 |
+
)
|
178 |
+
|
179 |
+
print("--- Gemini Response Received ---")
|
180 |
+
# Extract text from the response
|
181 |
+
if hasattr(response, 'text'):
|
182 |
+
return response.text
|
183 |
+
elif getattr(response, 'parts', None):
|
184 |
+
return "".join(part.text for part in response.parts if hasattr(part, 'text'))
|
185 |
+
else:
|
186 |
+
block_reason = ""
|
187 |
+
if response.prompt_feedback and response.prompt_feedback.block_reason:
|
188 |
+
block_reason = f" Reason: {response.prompt_feedback.block_reason.name}"
|
189 |
+
return f"Model did not return text content.{block_reason}"
|
190 |
+
|
191 |
+
except Exception as e:
|
192 |
+
print(f"Error processing image '{image_url}' with Gemini: {e}")
|
193 |
+
return f"Sorry, an error occurred while analyzing the image. Please check the image URL or path. Error details: {str(e)}"
|
194 |
+
|
195 |
+
# Audio Tool
|
196 |
+
def transcribe_audio(audio_path: str) -> str:
|
197 |
+
"""
|
198 |
+
Given an audio file path or URL, uploads the file to Gemini API and generates a speech transcript.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
audio_path (str): The URL or local file path of the audio to transcribe.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
str: A Markdown-formatted transcript of the speech, or an error message.
|
205 |
+
"""
|
206 |
+
print("--- Transcribing Audio ---")
|
207 |
+
print(f"Audio Path: {audio_path}")
|
208 |
+
audio_path = os.path.join("./GAIA_resource/", audio_path)
|
209 |
+
|
210 |
+
try:
|
211 |
+
# Initialize Gemini client
|
212 |
+
client = genai.Client(api_key=GOOGLE_API_KEY)
|
213 |
+
# Upload the audio file
|
214 |
+
uploaded = client.files.upload(file=audio_path)
|
215 |
+
prompt = "Generate a transcript of the speech."
|
216 |
+
|
217 |
+
# Generate transcript
|
218 |
+
response = client.models.generate_content(
|
219 |
+
model="gemini-2.0-flash",
|
220 |
+
contents=[prompt, uploaded]
|
221 |
+
)
|
222 |
+
|
223 |
+
print("--- Gemini Response Received ---")
|
224 |
+
# Extract transcript text
|
225 |
+
if hasattr(response, 'text'):
|
226 |
+
transcript = response.text
|
227 |
+
elif getattr(response, 'parts', None):
|
228 |
+
transcript = "".join(part.text for part in response.parts if hasattr(part, 'text'))
|
229 |
+
else:
|
230 |
+
transcript = "Model did not return text content."
|
231 |
+
|
232 |
+
# Format as Markdown
|
233 |
+
markdown_transcript = (
|
234 |
+
"## Audio Transcription Result\n"
|
235 |
+
f"**Transcript:**\n{transcript}"
|
236 |
+
)
|
237 |
+
return markdown_transcript
|
238 |
+
|
239 |
+
except Exception as e:
|
240 |
+
error_msg = f"Error transcribing audio '{audio_path}': {str(e)}"
|
241 |
+
return f"**Error:** {error_msg}"
|
242 |
+
|
243 |
+
|
244 |
+
# Excel Tool
|
245 |
+
def excel_to_csv(excel_path: str) -> str:
|
246 |
+
"""
|
247 |
+
Given an Excel file path or URL and an optional sheet name,
|
248 |
+
reads the spreadsheet using openpyxl and returns its contents as CSV text.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
excel_path (str): The URL or local file path of the Excel file to convert.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
str: The CSV-formatted content of the sheet.
|
255 |
+
"""
|
256 |
+
print("--- Converting Excel to CSV ---")
|
257 |
+
print(f"Excel Path: {excel_path}")
|
258 |
+
excel_path = os.path.join("./GAIA_resource/", excel_path)
|
259 |
+
|
260 |
+
try:
|
261 |
+
# Load workbook from URL or local file
|
262 |
+
if excel_path.startswith("http"):
|
263 |
+
response = requests.get(excel_path)
|
264 |
+
response.raise_for_status()
|
265 |
+
data_stream = BytesIO(response.content)
|
266 |
+
wb = load_workbook(filename=data_stream, data_only=True)
|
267 |
+
else:
|
268 |
+
wb = load_workbook(filename=excel_path, data_only=True)
|
269 |
+
|
270 |
+
# Select worksheet
|
271 |
+
ws = wb.active
|
272 |
+
|
273 |
+
# Build CSV lines manually
|
274 |
+
lines = []
|
275 |
+
for row in ws.iter_rows(values_only=True):
|
276 |
+
# Convert each cell to string, using empty string for None
|
277 |
+
str_cells = ["" if cell is None else str(cell) for cell in row]
|
278 |
+
# Join cells with commas
|
279 |
+
line = ",".join(str_cells)
|
280 |
+
lines.append(line)
|
281 |
+
|
282 |
+
# Combine all lines into one CSV string
|
283 |
+
print("Converted Excel to CSV result : ", lines)
|
284 |
+
return "\n".join(lines)
|
285 |
+
|
286 |
+
except Exception as e:
|
287 |
+
return f"Error converting Excel to CSV: {e}"
|
288 |
+
|
289 |
+
data_analyzer_agent = LlmAgent(
|
290 |
+
model="gemini-2.5-flash-preview-04-17",
|
291 |
+
name="data_analyzer_agent",
|
292 |
+
description="When data is provided, analyze it and derive an appropriate answer.",
|
293 |
+
instruction="""
|
294 |
+
# Steps
|
295 |
+
1. **Data Review**: Understand the data provided and understand what it shows.
|
296 |
+
2. **Prepare for Analysis**: If necessary, clean the data and prepare it for analysis.
|
297 |
+
3. **Data Analysis**: Analyze the data using appropriate methods to find meaningful information and trends.
|
298 |
+
4. **Interpretation**: Interpret the analysis results to answer questions and doubts.
|
299 |
+
5. **Present Conclusions**: Present your conclusions and insights in a logical summary.
|
300 |
+
|
301 |
+
# Output Format
|
302 |
+
- State your conclusions in a short sentence, but make sure they are clear and specific.
|
303 |
+
- If necessary, use tables and graphs to provide additional information.
|
304 |
+
|
305 |
+
# Examples
|
306 |
+
- **Input Data**:
|
307 |
+
- Survey data on age, gender, occupation, and annual income
|
308 |
+
- **Analysis Results**:
|
309 |
+
- The older the person, the higher the annual income tends to be.
|
310 |
+
- **Statement of conclusion**:
|
311 |
+
- "The survey data shows that the older you are, the higher your average annual income is."
|
312 |
+
|
313 |
+
# Notes
|
314 |
+
- If your data set is very large, consider using sample data or segmenting your data for analysis.
|
315 |
+
- Distinguish between qualitative and quantitative data and choose the appropriate analysis method for each.
|
316 |
+
""",
|
317 |
+
tools=[excel_to_csv] # Provide the function directly
|
318 |
+
)
|
319 |
+
|
320 |
+
|
321 |
+
# Read file ascii
|
322 |
+
def read_file_ascii(file_path: str) -> str:
|
323 |
+
"""
|
324 |
+
Given a file URL or local file path, reads the file content and returns it as an ASCII string.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
file_path (str): The URL or local file path of the file to read.
|
328 |
+
|
329 |
+
Returns:
|
330 |
+
str: The ASCII-decoded content of the file, or an error message on failure.
|
331 |
+
"""
|
332 |
+
print("File Path : ", file_path)
|
333 |
+
file_path = os.path.join("./GAIA_resource/", file_path)
|
334 |
+
|
335 |
+
try:
|
336 |
+
# Load data from URL or local file
|
337 |
+
if file_path.startswith("http"):
|
338 |
+
response = requests.get(file_path)
|
339 |
+
response.raise_for_status()
|
340 |
+
data_bytes = response.content
|
341 |
+
else:
|
342 |
+
with open(file_path, "rb") as f:
|
343 |
+
data_bytes = f.read()
|
344 |
+
|
345 |
+
# Decode bytes to ASCII string, replacing errors
|
346 |
+
ascii_str = data_bytes.decode("ascii", errors="replace")
|
347 |
+
return ascii_str
|
348 |
+
|
349 |
+
except Exception as e:
|
350 |
+
return f"Error reading file as ASCII: {e}"
|
351 |
+
|
352 |
+
|
353 |
+
# Call Agent Async
|
354 |
+
async def call_agent_async(query: str, runner, user_id, session_id):
|
355 |
+
"""Sends a query to the agent and prints the final response."""
|
356 |
+
print(f"\n>>> User Query: {query}")
|
357 |
+
|
358 |
+
# Prepare the user's message in ADK format
|
359 |
+
content = types.Content(role='user', parts=[types.Part(text=query)])
|
360 |
+
|
361 |
+
final_response_text = "Agent did not produce a final response." # Default
|
362 |
+
|
363 |
+
# Key Concept: run_async executes the agent logic and yields Events.
|
364 |
+
# We iterate through events to find the final answer.
|
365 |
+
async for event in runner.run_async(user_id=user_id, session_id=session_id, new_message=content):
|
366 |
+
# Key Concept: is_final_response() marks the concluding message for the turn.
|
367 |
+
if event.is_final_response():
|
368 |
+
if event.content and event.content.parts:
|
369 |
+
# Assuming text response in the first part
|
370 |
+
final_response_text = event.content.parts[0].text
|
371 |
+
elif event.actions and event.actions.escalate: # Handle potential errors/escalations
|
372 |
+
final_response_text = f"Agent escalated: {event.error_message or 'No specific message.'}"
|
373 |
+
# Add more checks here if needed (e.g., specific error codes)
|
374 |
+
break # Stop processing events once the final response is found
|
375 |
+
|
376 |
+
print(f"<<< Agent Response: {final_response_text}")
|
377 |
+
return final_response_text # Return the final response text
|
378 |
+
|
379 |
+
|
380 |
+
# (Keep Constants as is)
|
381 |
+
# --- Constants ---
|
382 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
383 |
+
|
384 |
+
|
385 |
+
# --- Basic Agent Definition ---
|
386 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
387 |
+
#class BasicAgent:
|
388 |
+
# def __init__(self):
|
389 |
+
# print("BasicAgent initialized.")
|
390 |
+
# def __call__(self, question: str) -> str:
|
391 |
+
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
392 |
+
# #fixed_answer = "This is a default answer."
|
393 |
+
# #print(f"Agent returning fixed answer: {fixed_answer}")
|
394 |
+
#
|
395 |
+
# return fixed_answer
|
396 |
+
|
397 |
+
|
398 |
+
description_text = """
|
399 |
+
You are GAIA Solver, a highly capable AI assistant designed to answer questions from the GAIA benchmark accurately and concisely using a suite of available tools. Your goal is to provide the precise answer in the requested format based *only* on the provided question text.
|
400 |
+
"""
|
401 |
+
|
402 |
+
instruction_text = """
|
403 |
+
|
404 |
+
Thinking Process:
|
405 |
+
1. **Analyze Question & Identify Files:** Carefully read the question. Determine the core task and the **exact final answer format**. Check if the question explicitly mentions an attached file (image, Excel, audio, code).
|
406 |
+
2. **Identify Filename:** If a file is mentioned, identify its filename from the text (e.g., "Homework.mp3", "image.png"). If no specific filename is given for a required file type, state that you need the filename. **Do not guess filenames.**
|
407 |
+
3. **Plan:** Create a step-by-step plan using tools. If a file is needed, include the correct tool call with the identified filename.
|
408 |
+
4. **Execute & Refine:** Execute the plan. Pass correct arguments (especially filenames). Evaluate tool outputs. If errors occur (e.g., file not found, API errors) or info is insufficient, revise the plan (e.g., use `web_search`, different tool prompts).
|
409 |
+
5. **Synthesize Answer:** Combine information. Use `execute_python_code` for final formatting/calculations.
|
410 |
+
6. **Final Output:** Generate **only the final answer** in the requested format. No extra text. If the answer cannot be found or a required filename was missing/invalid, output: "I could not find the answer."
|
411 |
+
|
412 |
+
Constraints:
|
413 |
+
- Base actions *only* on the provided question text.
|
414 |
+
- Adhere strictly to the requested output format.
|
415 |
+
"""
|
416 |
+
|
417 |
+
|
418 |
+
async def main():
|
419 |
+
|
420 |
+
api_url = DEFAULT_API_URL
|
421 |
+
questions_url = f"{api_url}/questions"
|
422 |
+
submit_url = f"{api_url}/submit"
|
423 |
+
|
424 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
425 |
+
try:
|
426 |
+
root_agent = Agent(
|
427 |
+
name = "root_agent",
|
428 |
+
model = "gemini-2.5-pro-preview-03-25",
|
429 |
+
description = description_text,
|
430 |
+
instruction = instruction_text,
|
431 |
+
tools = [
|
432 |
+
agent_tool.AgentTool(agent=search_agent),
|
433 |
+
agent_tool.AgentTool(agent=coding_agent),
|
434 |
+
agent_tool.AgentTool(agent=code_execution_agent),
|
435 |
+
understand_youtube_video,
|
436 |
+
understand_image,
|
437 |
+
transcribe_audio,
|
438 |
+
agent_tool.AgentTool(agent=data_analyzer_agent),
|
439 |
+
read_file_ascii,
|
440 |
+
]
|
441 |
+
)
|
442 |
+
except Exception as e:
|
443 |
+
print(f"Error instantiating agent: {e}")
|
444 |
+
return f"Error initializing agent: {e}", None
|
445 |
+
|
446 |
+
|
447 |
+
# 2. Fetch Questions
|
448 |
+
print(f"Fetching questions from: {questions_url}")
|
449 |
+
try:
|
450 |
+
response = requests.get(questions_url, timeout=15)
|
451 |
+
response.raise_for_status()
|
452 |
+
questions_data = response.json()
|
453 |
+
if not questions_data:
|
454 |
+
print("Fetched questions list is empty.")
|
455 |
+
return "Fetched questions list is empty or invalid format.", None
|
456 |
+
print(f"Fetched {len(questions_data)} questions.")
|
457 |
+
except requests.exceptions.RequestException as e:
|
458 |
+
print(f"Error fetching questions: {e}")
|
459 |
+
return f"Error fetching questions: {e}", None
|
460 |
+
except requests.exceptions.JSONDecodeError as e:
|
461 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
462 |
+
print(f"Response text: {response.text[:500]}")
|
463 |
+
return f"Error decoding server response for questions: {e}", None
|
464 |
+
except Exception as e:
|
465 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
466 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
467 |
+
|
468 |
+
# 3. Run your Agent
|
469 |
+
results_log = []
|
470 |
+
answers_payload = []
|
471 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
472 |
+
i = 0
|
473 |
+
for item in questions_data:
|
474 |
+
i += 1
|
475 |
+
if i < 12:
|
476 |
+
continue
|
477 |
+
elif i > 12:
|
478 |
+
break
|
479 |
+
task_id = item.get("task_id")
|
480 |
+
question_text = item.get("question")
|
481 |
+
question_file_name = item.get("file_name")
|
482 |
+
question_all = question_text + " file_name = " + question_file_name
|
483 |
+
if not task_id or question_text is None:
|
484 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
485 |
+
continue
|
486 |
+
try:
|
487 |
+
APP_NAME = "gaia_agent"
|
488 |
+
USER_ID = "user_1"
|
489 |
+
SESSION_ID = item.get("task_id")
|
490 |
+
|
491 |
+
session_service = InMemorySessionService()
|
492 |
+
|
493 |
+
session = session_service.create_session(
|
494 |
+
app_name=APP_NAME,
|
495 |
+
user_id=USER_ID,
|
496 |
+
session_id=SESSION_ID
|
497 |
+
)
|
498 |
+
runner = Runner(
|
499 |
+
agent=root_agent, # The agent we want to run
|
500 |
+
app_name=APP_NAME, # Associates runs with our app
|
501 |
+
session_service=session_service # Uses our session manager
|
502 |
+
)
|
503 |
+
submitted_answer = await call_agent_async(question_all,
|
504 |
+
runner=runner,
|
505 |
+
user_id=USER_ID,
|
506 |
+
session_id=SESSION_ID)
|
507 |
+
|
508 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
509 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
510 |
+
except Exception as e:
|
511 |
+
print(f"Error running agent on task {task_id}: {e}")
|
512 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
513 |
+
|
514 |
+
if not answers_payload:
|
515 |
+
print("Agent did not produce any answers to submit.")
|
516 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
517 |
+
|
518 |
+
# 4. Prepare Submission
|
519 |
+
#submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
520 |
+
#status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
521 |
+
#print(status_update)
|
522 |
+
|
523 |
+
# スクリプトが直接実行された場合にここから開始します
|
524 |
+
if __name__ == "__main__":
|
525 |
+
# asyncio.run() を使って非同期の main 関数を実行します
|
526 |
+
# これがないと async def main() は実行されません
|
527 |
+
try:
|
528 |
+
asyncio.run(main())
|
529 |
+
except Exception as e:
|
530 |
+
print(f"An error occurred during the asyncio run: {e}")
|
app.py
CHANGED
@@ -4,22 +4,444 @@ import requests
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
@@ -38,9 +460,32 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
@@ -76,11 +521,33 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
|
|
|
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
@@ -90,6 +557,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
|
|
93 |
|
94 |
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
@@ -145,11 +613,15 @@ with gr.Blocks() as demo:
|
|
145 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
gr.Markdown(
|
147 |
"""
|
|
|
|
|
|
|
|
|
|
|
148 |
**Instructions:**
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
|
154 |
---
|
155 |
**Disclaimers:**
|
@@ -193,4 +665,5 @@ if __name__ == "__main__":
|
|
193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
+
import asyncio
|
8 |
+
|
9 |
+
from google import genai
|
10 |
+
from google.adk.agents import Agent
|
11 |
+
from google.adk.runners import Runner
|
12 |
+
from google.adk.sessions import InMemorySessionService
|
13 |
+
from google.genai import types
|
14 |
+
from google.adk.tools import agent_tool
|
15 |
+
from google.adk.agents import Agent
|
16 |
+
from google.adk.tools import google_search, built_in_code_execution
|
17 |
+
from google.adk.agents import LlmAgent
|
18 |
+
|
19 |
+
from openpyxl import load_workbook
|
20 |
+
|
21 |
+
import warnings
|
22 |
+
# Ignore all warnings
|
23 |
+
warnings.filterwarnings("ignore")
|
24 |
+
|
25 |
+
import logging
|
26 |
+
logging.basicConfig(level=logging.ERROR)
|
27 |
+
|
28 |
+
|
29 |
+
# Load API KEYs
|
30 |
+
os.getenv('GOOGLE_API_KEY')
|
31 |
+
|
32 |
+
|
33 |
+
# Agent Tools
|
34 |
+
coding_agent = LlmAgent(
|
35 |
+
model='gemini-2.0-flash',
|
36 |
+
name='CodeAgent',
|
37 |
+
instruction="""You are a calculator agent.
|
38 |
+
When given a mathematical expression, write and execute Python code to calculate the result.
|
39 |
+
Return only the final numerical result as plain text, without markdown or code blocks.
|
40 |
+
""",
|
41 |
+
description="Executes Python code to perform calculations.",
|
42 |
+
tools=[built_in_code_execution],
|
43 |
+
)
|
44 |
+
|
45 |
+
code_execution_agent = LlmAgent(
|
46 |
+
model='gemini-2.0-flash',
|
47 |
+
name='CodeAgent',
|
48 |
+
instruction="""
|
49 |
+
You're a specialist in Code Execution. Execute Python code to get the result.
|
50 |
+
Return only the final numerical result as plain text, without markdown or code blocks.
|
51 |
+
|
52 |
+
If you given the python code, do not add, subtract any codes from original one.
|
53 |
+
""",
|
54 |
+
description="Executes Python code. It will not generate code.",
|
55 |
+
tools=[built_in_code_execution],
|
56 |
+
)
|
57 |
+
|
58 |
+
search_agent = Agent(
|
59 |
+
name="basic_search_agent",
|
60 |
+
model="gemini-2.0-flash",
|
61 |
+
description="Agent to answer questions using Google Search.",
|
62 |
+
instruction="I can answer your questions by searching the internet. Just ask me anything!",
|
63 |
+
# google_search is a pre-built tool which allows the agent to perform Google searches.
|
64 |
+
tools=[google_search]
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
# YouTube Tools
|
69 |
+
def understand_youtube_video(video_url: str, question: str) -> str:
|
70 |
+
"""
|
71 |
+
Given a YouTube video URL and question, this will use the Gemini API to analyze the video content and provide an answer.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
video_url (str): The URL of the YouTube video you want to analyze (e.g. "https://www.youtube.com/watch?v=...").
|
75 |
+
If Gemini cannot handle this directly, you may need a different format, such as a GCS URI.
|
76 |
+
question (str): The specific question about the video content.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
str: The answer generated by the Gemini model based on the video and question.
|
80 |
+
Returns an error message if processing fails.
|
81 |
+
|
82 |
+
"""
|
83 |
+
print(f"--- Analyzing YouTube Video ---")
|
84 |
+
print(f"URL: {video_url}")
|
85 |
+
print(f"Question: {question}")
|
86 |
+
|
87 |
+
try:
|
88 |
+
client = genai.Client(api_key=GOOGLE_API_KEY)
|
89 |
+
model='models/gemini-2.0-flash',
|
90 |
+
|
91 |
+
response = client.models.generate_content(
|
92 |
+
model='models/gemini-2.0-flash',
|
93 |
+
contents=types.Content(
|
94 |
+
parts=[
|
95 |
+
types.Part(
|
96 |
+
file_data=types.FileData(file_uri=video_url)
|
97 |
+
),
|
98 |
+
types.Part(text=question)
|
99 |
+
]
|
100 |
+
)
|
101 |
+
)
|
102 |
+
|
103 |
+
print("--- Gemini Response Received ---")
|
104 |
+
if hasattr(response, 'text'):
|
105 |
+
return response.text
|
106 |
+
elif response.parts:
|
107 |
+
return "".join(part.text for part in response.parts if hasattr(part, 'text'))
|
108 |
+
else:
|
109 |
+
block_reason = ""
|
110 |
+
if response.prompt_feedback and response.prompt_feedback.block_reason:
|
111 |
+
block_reason = f" Reason: {response.prompt_feedback.block_reason.name}"
|
112 |
+
return f"Model did not return text content.{block_reason}"
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Error processing YouTube video '{video_url}' with Gemini: {e}")
|
115 |
+
return f"Sorry, an error occurred while analyzing the video. Please check the URL and ensure the video is accessible. Error details: {str(e)}"
|
116 |
+
|
117 |
+
|
118 |
+
# Image Tools
|
119 |
+
def understand_image(image_file_name: str) -> str:
|
120 |
+
"""
|
121 |
+
Given an image file , this will analyze the image in detail and describe its contents in as much detail as possible.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
image_file_name (str): The file name of the image to analyze. Which given as "file_name" parameter in the question.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
str: The response text generated by the Gemini model.
|
128 |
+
"""
|
129 |
+
image_url = os.path.join("./GAIA_resource/" , image_file_name)
|
130 |
+
print("--- Analyzing Image ---")
|
131 |
+
print(f"Image URL/Path: {image_url}")
|
132 |
+
|
133 |
+
prompt = """
|
134 |
+
Analyze the image in detail and describe its contents in as much detail as possible.
|
135 |
+
For example, give someone a chess board and describe where each piece is.
|
136 |
+
|
137 |
+
The description should include the following information:
|
138 |
+
- General overview of the image
|
139 |
+
- Details of important elements and features (e.g., location relationships, attributes, etc.)
|
140 |
+
- Identification of specific objects or characters (e.g., game piece names, positions, people, etc.)
|
141 |
+
|
142 |
+
# Steps
|
143 |
+
1. Examine the image as a whole and identify the main elements.
|
144 |
+
2. Examine each element in detail and identify what it is.
|
145 |
+
3. Develop a description of each element based on its characteristic relationships and positions.
|
146 |
+
4. Finally, summarize the overall scene or situation.
|
147 |
+
|
148 |
+
# Output Format
|
149 |
+
Provide detailed descriptions in paragraphs of text, using bullet points where necessary.
|
150 |
+
|
151 |
+
"""
|
152 |
+
|
153 |
+
try:
|
154 |
+
# Fetch the image data
|
155 |
+
if image_url.startswith("http"):
|
156 |
+
image_bytes = requests.get(image_url).content
|
157 |
+
else:
|
158 |
+
with open(image_url, "rb") as f:
|
159 |
+
image_bytes = f.read()
|
160 |
+
|
161 |
+
# Create image part
|
162 |
+
image_part = types.Part.from_bytes(
|
163 |
+
data=image_bytes,
|
164 |
+
mime_type="image/jpeg"
|
165 |
+
)
|
166 |
+
|
167 |
+
# Initialize the Gemini client
|
168 |
+
client = genai.Client(api_key=GOOGLE_API_KEY)
|
169 |
+
# Build contents with question text and image part
|
170 |
+
response = client.models.generate_content(
|
171 |
+
model="gemini-2.0-flash-exp",
|
172 |
+
contents=[
|
173 |
+
prompt,
|
174 |
+
image_part
|
175 |
+
]
|
176 |
+
)
|
177 |
+
|
178 |
+
print("--- Gemini Response Received ---")
|
179 |
+
# Extract text from the response
|
180 |
+
if hasattr(response, 'text'):
|
181 |
+
return response.text
|
182 |
+
elif getattr(response, 'parts', None):
|
183 |
+
return "".join(part.text for part in response.parts if hasattr(part, 'text'))
|
184 |
+
else:
|
185 |
+
block_reason = ""
|
186 |
+
if response.prompt_feedback and response.prompt_feedback.block_reason:
|
187 |
+
block_reason = f" Reason: {response.prompt_feedback.block_reason.name}"
|
188 |
+
return f"Model did not return text content.{block_reason}"
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Error processing image '{image_url}' with Gemini: {e}")
|
192 |
+
return f"Sorry, an error occurred while analyzing the image. Please check the image URL or path. Error details: {str(e)}"
|
193 |
+
|
194 |
+
# Audio Tool
|
195 |
+
def transcribe_audio(audio_path: str) -> str:
|
196 |
+
"""
|
197 |
+
Given an audio file path or URL, uploads the file to Gemini API and generates a speech transcript.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
audio_path (str): The URL or local file path of the audio to transcribe.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
str: A Markdown-formatted transcript of the speech, or an error message.
|
204 |
+
"""
|
205 |
+
print("--- Transcribing Audio ---")
|
206 |
+
print(f"Audio Path: {audio_path}")
|
207 |
+
audio_path = os.path.join("./GAIA_resource/", audio_path)
|
208 |
+
|
209 |
+
try:
|
210 |
+
# Initialize Gemini client
|
211 |
+
client = genai.Client(api_key=GOOGLE_API_KEY)
|
212 |
+
# Upload the audio file
|
213 |
+
uploaded = client.files.upload(file=audio_path)
|
214 |
+
prompt = "Generate a transcript of the speech."
|
215 |
+
|
216 |
+
# Generate transcript
|
217 |
+
response = client.models.generate_content(
|
218 |
+
model="gemini-2.0-flash",
|
219 |
+
contents=[prompt, uploaded]
|
220 |
+
)
|
221 |
+
|
222 |
+
print("--- Gemini Response Received ---")
|
223 |
+
# Extract transcript text
|
224 |
+
if hasattr(response, 'text'):
|
225 |
+
transcript = response.text
|
226 |
+
elif getattr(response, 'parts', None):
|
227 |
+
transcript = "".join(part.text for part in response.parts if hasattr(part, 'text'))
|
228 |
+
else:
|
229 |
+
transcript = "Model did not return text content."
|
230 |
+
|
231 |
+
# Format as Markdown
|
232 |
+
markdown_transcript = (
|
233 |
+
"## Audio Transcription Result\n"
|
234 |
+
f"**Transcript:**\n{transcript}"
|
235 |
+
)
|
236 |
+
return markdown_transcript
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
error_msg = f"Error transcribing audio '{audio_path}': {str(e)}"
|
240 |
+
return f"**Error:** {error_msg}"
|
241 |
+
|
242 |
+
|
243 |
+
# Excel Tool
|
244 |
+
def excel_to_csv(excel_path: str) -> str:
|
245 |
+
"""
|
246 |
+
Given an Excel file path or URL and an optional sheet name,
|
247 |
+
reads the spreadsheet using openpyxl and returns its contents as CSV text.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
excel_path (str): The URL or local file path of the Excel file to convert.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
str: The CSV-formatted content of the sheet.
|
254 |
+
"""
|
255 |
+
print("--- Converting Excel to CSV ---")
|
256 |
+
print(f"Excel Path: {excel_path}")
|
257 |
+
excel_path = os.path.join("./GAIA_resource/", excel_path)
|
258 |
+
|
259 |
+
try:
|
260 |
+
# Load workbook from URL or local file
|
261 |
+
if excel_path.startswith("http"):
|
262 |
+
response = requests.get(excel_path)
|
263 |
+
response.raise_for_status()
|
264 |
+
data_stream = BytesIO(response.content)
|
265 |
+
wb = load_workbook(filename=data_stream, data_only=True)
|
266 |
+
else:
|
267 |
+
wb = load_workbook(filename=excel_path, data_only=True)
|
268 |
+
|
269 |
+
# Select worksheet
|
270 |
+
ws = wb.active
|
271 |
+
|
272 |
+
# Build CSV lines manually
|
273 |
+
lines = []
|
274 |
+
for row in ws.iter_rows(values_only=True):
|
275 |
+
# Convert each cell to string, using empty string for None
|
276 |
+
str_cells = ["" if cell is None else str(cell) for cell in row]
|
277 |
+
# Join cells with commas
|
278 |
+
line = ",".join(str_cells)
|
279 |
+
lines.append(line)
|
280 |
+
|
281 |
+
# Combine all lines into one CSV string
|
282 |
+
print("Converted Excel to CSV result : ", lines)
|
283 |
+
return "\n".join(lines)
|
284 |
+
|
285 |
+
except Exception as e:
|
286 |
+
return f"Error converting Excel to CSV: {e}"
|
287 |
+
|
288 |
+
data_analyzer_agent = LlmAgent(
|
289 |
+
model="gemini-2.5-flash-preview-04-17",
|
290 |
+
name="data_analyzer_agent",
|
291 |
+
description="When data is provided, analyze it and derive an appropriate answer.",
|
292 |
+
instruction="""
|
293 |
+
# Steps
|
294 |
+
1. **Data Review**: Understand the data provided and understand what it shows.
|
295 |
+
2. **Prepare for Analysis**: If necessary, clean the data and prepare it for analysis.
|
296 |
+
3. **Data Analysis**: Analyze the data using appropriate methods to find meaningful information and trends.
|
297 |
+
4. **Interpretation**: Interpret the analysis results to answer questions and doubts.
|
298 |
+
5. **Present Conclusions**: Present your conclusions and insights in a logical summary.
|
299 |
+
|
300 |
+
# Output Format
|
301 |
+
- State your conclusions in a short sentence, but make sure they are clear and specific.
|
302 |
+
- If necessary, use tables and graphs to provide additional information.
|
303 |
+
|
304 |
+
# Examples
|
305 |
+
- **Input Data**:
|
306 |
+
- Survey data on age, gender, occupation, and annual income
|
307 |
+
- **Analysis Results**:
|
308 |
+
- The older the person, the higher the annual income tends to be.
|
309 |
+
- **Statement of conclusion**:
|
310 |
+
- "The survey data shows that the older you are, the higher your average annual income is."
|
311 |
+
|
312 |
+
# Notes
|
313 |
+
- If your data set is very large, consider using sample data or segmenting your data for analysis.
|
314 |
+
- Distinguish between qualitative and quantitative data and choose the appropriate analysis method for each.
|
315 |
+
""",
|
316 |
+
tools=[excel_to_csv] # Provide the function directly
|
317 |
+
)
|
318 |
+
|
319 |
+
|
320 |
+
# Read file ascii
|
321 |
+
def read_file_ascii(file_path: str) -> str:
|
322 |
+
"""
|
323 |
+
Given a file URL or local file path, reads the file content and returns it as an ASCII string.
|
324 |
+
|
325 |
+
Args:
|
326 |
+
file_path (str): The URL or local file path of the file to read.
|
327 |
+
|
328 |
+
Returns:
|
329 |
+
str: The ASCII-decoded content of the file, or an error message on failure.
|
330 |
+
"""
|
331 |
+
print("File Path : ", file_path)
|
332 |
+
file_path = os.path.join("./GAIA_resource/", file_path)
|
333 |
+
|
334 |
+
try:
|
335 |
+
# Load data from URL or local file
|
336 |
+
if file_path.startswith("http"):
|
337 |
+
response = requests.get(file_path)
|
338 |
+
response.raise_for_status()
|
339 |
+
data_bytes = response.content
|
340 |
+
else:
|
341 |
+
with open(file_path, "rb") as f:
|
342 |
+
data_bytes = f.read()
|
343 |
+
|
344 |
+
# Decode bytes to ASCII string, replacing errors
|
345 |
+
ascii_str = data_bytes.decode("ascii", errors="replace")
|
346 |
+
return ascii_str
|
347 |
+
|
348 |
+
except Exception as e:
|
349 |
+
return f"Error reading file as ASCII: {e}"
|
350 |
+
|
351 |
+
|
352 |
+
# Call Agent Async
|
353 |
+
async def call_agent_async(query: str, runner, user_id, session_id):
|
354 |
+
"""Sends a query to the agent and prints the final response."""
|
355 |
+
print(f"\n>>> User Query: {query}")
|
356 |
+
|
357 |
+
# Prepare the user's message in ADK format
|
358 |
+
content = types.Content(role='user', parts=[types.Part(text=query)])
|
359 |
+
|
360 |
+
final_response_text = "Agent did not produce a final response." # Default
|
361 |
+
|
362 |
+
# Key Concept: run_async executes the agent logic and yields Events.
|
363 |
+
# We iterate through events to find the final answer.
|
364 |
+
async for event in runner.run_async(user_id=user_id, session_id=session_id, new_message=content):
|
365 |
+
# Key Concept: is_final_response() marks the concluding message for the turn.
|
366 |
+
if event.is_final_response():
|
367 |
+
if event.content and event.content.parts:
|
368 |
+
# Assuming text response in the first part
|
369 |
+
final_response_text = event.content.parts[0].text
|
370 |
+
elif event.actions and event.actions.escalate: # Handle potential errors/escalations
|
371 |
+
final_response_text = f"Agent escalated: {event.error_message or 'No specific message.'}"
|
372 |
+
# Add more checks here if needed (e.g., specific error codes)
|
373 |
+
break # Stop processing events once the final response is found
|
374 |
+
|
375 |
+
print(f"<<< Agent Response: {final_response_text}")
|
376 |
+
return final_response_text # Return the final response text
|
377 |
+
|
378 |
+
|
379 |
# (Keep Constants as is)
|
380 |
# --- Constants ---
|
381 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
382 |
+
# for GAIA Repo
|
383 |
+
GAIA_REPO_ID = "gaia-benchmark/GAIA"
|
384 |
+
GAIA_VALIDATION_DIR = "2023/validation"
|
385 |
+
LOCAL_GAIA_DIR = "GAIA_resource"
|
386 |
+
|
387 |
+
|
388 |
+
# --- GAIA Data Download Utility ---
|
389 |
+
def download_gaia_validation(local_dir: str = LOCAL_GAIA_DIR):
|
390 |
+
"""
|
391 |
+
Download only the validation part of the Hugging Face GAIA dataset to
|
392 |
+
local_dir/2023/validation/.
|
393 |
+
If it has already been downloaded, it will not be downloaded again.
|
394 |
+
"""
|
395 |
+
target_path = os.path.join(local_dir, GAIA_VALIDATION_DIR)
|
396 |
+
if os.path.isdir(target_path) and os.listdir(target_path):
|
397 |
+
print(f"GAIA validation data already exists at {target_path}")
|
398 |
+
return
|
399 |
+
|
400 |
+
os.makedirs(local_dir, exist_ok=True)
|
401 |
+
print(f"Downloading GAIA validation data into {local_dir} ...")
|
402 |
+
snapshot_download(
|
403 |
+
repo_id=GAIA_REPO_ID,
|
404 |
+
repo_type="dataset",
|
405 |
+
allow_patterns=[f"{GAIA_VALIDATION_DIR}/*"],
|
406 |
+
local_dir=local_dir,
|
407 |
+
local_dir_use_symlinks=False
|
408 |
+
)
|
409 |
+
print(f"Downloaded GAIA validation data to {target_path}")
|
410 |
|
411 |
# --- Basic Agent Definition ---
|
412 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
413 |
+
#class BasicAgent:
|
414 |
+
# def __init__(self):
|
415 |
+
# print("BasicAgent initialized.")
|
416 |
+
# def __call__(self, question: str) -> str:
|
417 |
+
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
418 |
+
# #fixed_answer = "This is a default answer."
|
419 |
+
# #print(f"Agent returning fixed answer: {fixed_answer}")
|
420 |
+
#
|
421 |
+
# return fixed_answer
|
422 |
+
|
423 |
+
|
424 |
+
description_text = """
|
425 |
+
You are GAIA Solver, a highly capable AI assistant designed to answer questions from the GAIA benchmark accurately and concisely using a suite of available tools. Your goal is to provide the precise answer in the requested format based *only* on the provided question text.
|
426 |
+
"""
|
427 |
+
|
428 |
+
instruction_text = """
|
429 |
+
|
430 |
+
Thinking Process:
|
431 |
+
1. **Analyze Question & Identify Files:** Carefully read the question. Determine the core task and the **exact final answer format**. Check if the question explicitly mentions an attached file (image, Excel, audio, code).
|
432 |
+
2. **Identify Filename:** If a file is mentioned, identify its filename from the text (e.g., "Homework.mp3", "image.png"). If no specific filename is given for a required file type, state that you need the filename. **Do not guess filenames.**
|
433 |
+
3. **Plan:** Create a step-by-step plan using tools. If a file is needed, include the correct tool call with the identified filename.
|
434 |
+
4. **Execute & Refine:** Execute the plan. Pass correct arguments (especially filenames). Evaluate tool outputs. If errors occur (e.g., file not found, API errors) or info is insufficient, revise the plan (e.g., use `web_search`, different tool prompts).
|
435 |
+
5. **Synthesize Answer:** Combine information. Use `execute_python_code` for final formatting/calculations.
|
436 |
+
6. **Final Output:** Generate **only the final answer** in the requested format. No extra text. If the answer cannot be found or a required filename was missing/invalid, output: "I could not find the answer."
|
437 |
+
|
438 |
+
Constraints:
|
439 |
+
- Base actions *only* on the provided question text.
|
440 |
+
- Adhere strictly to the requested output format.
|
441 |
+
"""
|
442 |
+
|
443 |
+
|
444 |
+
async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
445 |
"""
|
446 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
447 |
and displays the results.
|
|
|
460 |
questions_url = f"{api_url}/questions"
|
461 |
submit_url = f"{api_url}/submit"
|
462 |
|
463 |
+
# 0. Download GAIA data
|
464 |
+
try:
|
465 |
+
download_gaia_validation()
|
466 |
+
except Exception as e:
|
467 |
+
err = f"Error downloading GAIA validation data: {e}"
|
468 |
+
print(err)
|
469 |
+
return err, None
|
470 |
+
|
471 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
472 |
try:
|
473 |
+
root_agent = Agent(
|
474 |
+
name = "root_agent",
|
475 |
+
model = "gemini-2.5-pro-preview-03-25",
|
476 |
+
description = description_text,
|
477 |
+
instruction = instruction_text,
|
478 |
+
tools = [
|
479 |
+
agent_tool.AgentTool(agent=search_agent),
|
480 |
+
agent_tool.AgentTool(agent=coding_agent),
|
481 |
+
agent_tool.AgentTool(agent=code_execution_agent),
|
482 |
+
understand_youtube_video,
|
483 |
+
understand_image,
|
484 |
+
transcribe_audio,
|
485 |
+
agent_tool.AgentTool(agent=data_analyzer_agent),
|
486 |
+
read_file_ascii,
|
487 |
+
]
|
488 |
+
)
|
489 |
except Exception as e:
|
490 |
print(f"Error instantiating agent: {e}")
|
491 |
return f"Error initializing agent: {e}", None
|
|
|
521 |
for item in questions_data:
|
522 |
task_id = item.get("task_id")
|
523 |
question_text = item.get("question")
|
524 |
+
question_file_name = item.get("file_name")
|
525 |
+
question_all = question_text + " file_name = " + question_file_name
|
526 |
if not task_id or question_text is None:
|
527 |
print(f"Skipping item with missing task_id or question: {item}")
|
528 |
continue
|
529 |
try:
|
530 |
+
APP_NAME = "gaia_agent"
|
531 |
+
USER_ID = "user_1"
|
532 |
+
SESSION_ID = item.get("task_id")
|
533 |
+
|
534 |
+
session_service = InMemorySessionService()
|
535 |
+
|
536 |
+
session = session_service.create_session(
|
537 |
+
app_name=APP_NAME,
|
538 |
+
user_id=USER_ID,
|
539 |
+
session_id=SESSION_ID
|
540 |
+
)
|
541 |
+
runner = Runner(
|
542 |
+
agent=root_agent, # The agent we want to run
|
543 |
+
app_name=APP_NAME, # Associates runs with our app
|
544 |
+
session_service=session_service # Uses our session manager
|
545 |
+
)
|
546 |
+
submitted_answer = await call_agent_async(question_all,
|
547 |
+
runner=runner,
|
548 |
+
user_id=USER_ID,
|
549 |
+
session_id=SESSION_ID)
|
550 |
+
|
551 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
552 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
553 |
except Exception as e:
|
|
|
557 |
if not answers_payload:
|
558 |
print("Agent did not produce any answers to submit.")
|
559 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
560 |
+
|
561 |
|
562 |
# 4. Prepare Submission
|
563 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
613 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
614 |
gr.Markdown(
|
615 |
"""
|
616 |
+
**Introduction:**
|
617 |
+
|
618 |
+
This is an agent for GAIA benchmark.
|
619 |
+
Built with Google ADK (Agent Development Kit)
|
620 |
+
|
621 |
**Instructions:**
|
622 |
|
623 |
+
Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
624 |
+
Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
625 |
|
626 |
---
|
627 |
**Disclaimers:**
|
|
|
665 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
666 |
|
667 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
668 |
+
demo.launch(debug=True, share=False)
|
669 |
+
|
excel_test.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from openpyxl import load_workbook
|
4 |
+
|
5 |
+
|
6 |
+
# Excel Tool
|
7 |
+
def excel_to_csv(excel_path: str) -> str:
|
8 |
+
"""
|
9 |
+
Given an Excel file path or URL and an optional sheet name,
|
10 |
+
reads the spreadsheet using openpyxl and returns its contents as CSV text.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
excel_path (str): The URL or local file path of the Excel file to convert.
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
str: The CSV-formatted content of the sheet.
|
17 |
+
"""
|
18 |
+
print("--- Converting Excel to CSV ---")
|
19 |
+
print(f"Excel Path: {excel_path}")
|
20 |
+
excel_path = os.path.join("./GAIA_resource/", excel_path)
|
21 |
+
|
22 |
+
try:
|
23 |
+
# Load workbook from URL or local file
|
24 |
+
if excel_path.startswith("http"):
|
25 |
+
response = requests.get(excel_path)
|
26 |
+
response.raise_for_status()
|
27 |
+
data_stream = BytesIO(response.content)
|
28 |
+
wb = load_workbook(filename=data_stream, data_only=True)
|
29 |
+
else:
|
30 |
+
wb = load_workbook(filename=excel_path, data_only=True)
|
31 |
+
|
32 |
+
# Select worksheet
|
33 |
+
ws = wb.active
|
34 |
+
|
35 |
+
# Build CSV lines manually
|
36 |
+
lines = []
|
37 |
+
for row in ws.iter_rows(values_only=True):
|
38 |
+
# Convert each cell to string, using empty string for None
|
39 |
+
str_cells = ["" if cell is None else str(cell) for cell in row]
|
40 |
+
# Join cells with commas
|
41 |
+
line = ",".join(str_cells)
|
42 |
+
lines.append(line)
|
43 |
+
|
44 |
+
# Combine all lines into one CSV string
|
45 |
+
print("Converted Excel to CSV result : ", lines)
|
46 |
+
return "\n".join(lines)
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
return f"Error converting Excel to CSV: {e}"
|
50 |
+
|
51 |
+
|
52 |
+
excel_to_csv("7bd855d8-463d-4ed5-93ca-5fe35145f733.xlsx")
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
requests
|
3 |
+
google-genai
|
4 |
+
google.adk
|
5 |
+
openpyxl
|