Spaces:
Running
Running
File size: 9,354 Bytes
dbd33b2 25b2b2b 66a5452 9da39b7 dbd33b2 9da39b7 dbd33b2 25b2b2b dbd33b2 25b2b2b dbd33b2 25b2b2b 9da39b7 25b2b2b 9da39b7 25b2b2b 9da39b7 25b2b2b 66a5452 25b2b2b 9da39b7 25b2b2b 66a5452 25b2b2b a61b32e 25b2b2b 9da39b7 25b2b2b 9da39b7 25b2b2b 66a5452 25b2b2b 66a5452 9da39b7 66a5452 9da39b7 66a5452 9da39b7 66a5452 9da39b7 66a5452 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
import json
import requests
from tqdm import tqdm
import csv
import logging
import sys
from transformers import pipeline
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
stream=sys.stdout
)
logger = logging.getLogger(__name__)
class EvaluationSystem:
def __init__(self, data_processor, database_handler):
self.data_processor = data_processor
self.db_handler = database_handler
# Initialize the model
self.model = pipeline(
"text-generation",
model="google/flan-t5-base",
device=-1 # Use CPU
)
logger.info("Initialized evaluation system with flan-t5-base model")
def generate_llm_response(self, prompt):
"""Generate response using Hugging Face model"""
try:
response = self.model(
prompt,
max_length=512,
min_length=64,
num_return_sequences=1
)[0]['generated_text']
return response
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
return None
def relevance_scoring(self, query, retrieved_docs, top_k=5):
query_embedding = self.data_processor.embedding_model.encode(query)
doc_embeddings = [self.data_processor.embedding_model.encode(doc['content']) for doc in retrieved_docs]
similarities = cosine_similarity([query_embedding], doc_embeddings)[0]
return np.mean(sorted(similarities, reverse=True)[:top_k])
def answer_similarity(self, generated_answer, reference_answer):
gen_embedding = self.data_processor.embedding_model.encode(generated_answer)
ref_embedding = self.data_processor.embedding_model.encode(reference_answer)
return cosine_similarity([gen_embedding], [ref_embedding])[0][0]
def human_evaluation(self, video_id, query):
with self.db_handler.conn:
cursor = self.db_handler.conn.cursor()
cursor.execute('''
SELECT AVG(feedback) FROM user_feedback
WHERE video_id = ? AND query = ?
''', (video_id, query))
result = cursor.fetchone()
return result[0] if result[0] is not None else 0
def llm_as_judge(self, question, generated_answer, prompt_template):
prompt = prompt_template.format(
question=question,
answer_llm=generated_answer
)
try:
response = self.generate_llm_response(prompt)
if response:
# Try to parse JSON response
try:
evaluation = json.loads(response)
return evaluation
except json.JSONDecodeError:
logger.error("Failed to parse LLM response as JSON")
return None
return None
except Exception as e:
logger.error(f"Error in LLM evaluation: {str(e)}")
return None
def evaluate_rag(self, rag_system, ground_truth_file, prompt_template=None):
try:
ground_truth = pd.read_csv(ground_truth_file)
except FileNotFoundError:
logger.error("Ground truth file not found. Please generate ground truth data first.")
return None
evaluations = []
for _, row in tqdm(ground_truth.iterrows(), total=len(ground_truth)):
question = row['question']
video_id = row['video_id']
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
if not index_name:
logger.warning(f"No index found for video {video_id}. Skipping this question.")
continue
try:
answer_llm, _ = rag_system.query(question, search_method='hybrid', index_name=index_name)
except ValueError as e:
logger.error(f"Error querying RAG system: {str(e)}")
continue
if prompt_template:
evaluation = self.llm_as_judge(question, answer_llm, prompt_template)
if evaluation:
evaluations.append({
'video_id': str(video_id),
'question': str(question),
'answer': str(answer_llm),
'relevance': str(evaluation.get('Relevance', 'UNKNOWN')),
'explanation': str(evaluation.get('Explanation', 'No explanation provided'))
})
else:
similarity = self.answer_similarity(answer_llm, row.get('reference_answer', ''))
evaluations.append({
'video_id': str(video_id),
'question': str(question),
'answer': str(answer_llm),
'relevance': f"Similarity: {similarity}",
'explanation': "Cosine similarity used for evaluation"
})
# Save evaluations to CSV
if evaluations:
csv_path = 'data/evaluation_results.csv'
with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile:
fieldnames = ['video_id', 'question', 'answer', 'relevance', 'explanation']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for eval_data in evaluations:
writer.writerow(eval_data)
logger.info(f"Evaluation results saved to {csv_path}")
# Save evaluations to database
self.save_evaluations_to_db(evaluations)
return evaluations
def save_evaluations_to_db(self, evaluations):
for eval_data in evaluations:
self.db_handler.save_rag_evaluation(eval_data)
logger.info("Evaluation results saved to database")
def hit_rate(self, relevance_total):
return sum(any(line) for line in relevance_total) / len(relevance_total)
def mrr(self, relevance_total):
scores = []
for line in relevance_total:
for rank, relevant in enumerate(line, 1):
if relevant:
scores.append(1 / rank)
break
else:
scores.append(0)
return sum(scores) / len(scores)
def simple_optimize(self, param_ranges, objective_function, n_iterations=10):
best_params = None
best_score = float('-inf')
for _ in range(n_iterations):
current_params = {param: np.random.uniform(min_val, max_val)
for param, (min_val, max_val) in param_ranges.items()}
current_score = objective_function(current_params)
if current_score > best_score:
best_score = current_score
best_params = current_params
return best_params, best_score
def evaluate_search(self, ground_truth, search_function):
relevance_total = []
for _, row in tqdm(ground_truth.iterrows(), total=len(ground_truth)):
video_id = row['video_id']
results = search_function(row['question'], video_id)
relevance = [d['video_id'] == video_id for d in results]
relevance_total.append(relevance)
return {
'hit_rate': self.hit_rate(relevance_total),
'mrr': self.mrr(relevance_total),
}
def run_full_evaluation(self, rag_system, ground_truth_file, prompt_template=None):
# Load ground truth
ground_truth = pd.read_csv(ground_truth_file)
# Evaluate RAG
rag_evaluations = self.evaluate_rag(rag_system, ground_truth_file, prompt_template)
# Evaluate search performance
def search_function(query, video_id):
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
if index_name:
return rag_system.data_processor.search(query, num_results=10, method='hybrid', index_name=index_name)
return []
search_performance = self.evaluate_search(ground_truth, search_function)
# Optimize search parameters
param_ranges = {'content': (0.0, 3.0)} # Example parameter range
def objective_function(params):
def parameterized_search(query, video_id):
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
if index_name:
return rag_system.data_processor.search(
query,
num_results=10,
method='hybrid',
index_name=index_name,
boost_dict=params
)
return []
return self.evaluate_search(ground_truth, parameterized_search)['mrr']
best_params, best_score = self.simple_optimize(param_ranges, objective_function)
return {
"rag_evaluations": rag_evaluations,
"search_performance": search_performance,
"best_params": best_params,
"best_score": best_score
} |