Spaces:
Running
Running
Update app/evaluation.py
Browse files- app/evaluation.py +108 -103
app/evaluation.py
CHANGED
@@ -2,16 +2,46 @@ from sklearn.metrics.pairwise import cosine_similarity
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
-
import ollama
|
6 |
import requests
|
7 |
-
import sqlite3
|
8 |
from tqdm import tqdm
|
9 |
import csv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
class EvaluationSystem:
|
12 |
def __init__(self, data_processor, database_handler):
|
13 |
self.data_processor = data_processor
|
14 |
self.db_handler = database_handler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def relevance_scoring(self, query, retrieved_docs, top_k=5):
|
17 |
query_embedding = self.data_processor.embedding_model.encode(query)
|
@@ -35,44 +65,31 @@ class EvaluationSystem:
|
|
35 |
result = cursor.fetchone()
|
36 |
return result[0] if result[0] is not None else 0
|
37 |
|
38 |
-
def evaluate_rag_performance(self, rag_system, test_queries, reference_answers, index_name):
|
39 |
-
relevance_scores = []
|
40 |
-
similarity_scores = []
|
41 |
-
human_scores = []
|
42 |
-
|
43 |
-
for query, reference in zip(test_queries, reference_answers):
|
44 |
-
retrieved_docs = rag_system.data_processor.search(query, num_results=5, method='hybrid', index_name=index_name)
|
45 |
-
generated_answer, _ = rag_system.query(query, search_method='hybrid', index_name=index_name)
|
46 |
-
|
47 |
-
relevance_scores.append(self.relevance_scoring(query, retrieved_docs))
|
48 |
-
similarity_scores.append(self.answer_similarity(generated_answer, reference))
|
49 |
-
human_scores.append(self.human_evaluation(index_name, query))
|
50 |
-
|
51 |
-
return {
|
52 |
-
"avg_relevance_score": np.mean(relevance_scores),
|
53 |
-
"avg_similarity_score": np.mean(similarity_scores),
|
54 |
-
"avg_human_score": np.mean(human_scores)
|
55 |
-
}
|
56 |
-
|
57 |
def llm_as_judge(self, question, generated_answer, prompt_template):
|
58 |
-
prompt = prompt_template.format(
|
59 |
-
|
|
|
|
|
60 |
try:
|
61 |
-
response =
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
except Exception as e:
|
68 |
-
|
69 |
return None
|
70 |
|
71 |
def evaluate_rag(self, rag_system, ground_truth_file, prompt_template=None):
|
72 |
try:
|
73 |
ground_truth = pd.read_csv(ground_truth_file)
|
74 |
except FileNotFoundError:
|
75 |
-
|
76 |
return None
|
77 |
|
78 |
evaluations = []
|
@@ -84,13 +101,13 @@ class EvaluationSystem:
|
|
84 |
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
|
85 |
|
86 |
if not index_name:
|
87 |
-
|
88 |
continue
|
89 |
|
90 |
try:
|
91 |
answer_llm, _ = rag_system.query(question, search_method='hybrid', index_name=index_name)
|
92 |
except ValueError as e:
|
93 |
-
|
94 |
continue
|
95 |
|
96 |
if prompt_template:
|
@@ -114,79 +131,25 @@ class EvaluationSystem:
|
|
114 |
})
|
115 |
|
116 |
# Save evaluations to CSV
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
|
130 |
return evaluations
|
131 |
|
132 |
def save_evaluations_to_db(self, evaluations):
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
CREATE TABLE IF NOT EXISTS rag_evaluations (
|
137 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
138 |
-
video_id TEXT,
|
139 |
-
question TEXT,
|
140 |
-
answer TEXT,
|
141 |
-
relevance TEXT,
|
142 |
-
explanation TEXT
|
143 |
-
)
|
144 |
-
''')
|
145 |
-
for eval_data in evaluations:
|
146 |
-
cursor.execute('''
|
147 |
-
INSERT INTO rag_evaluations (video_id, question, answer, relevance, explanation)
|
148 |
-
VALUES (?, ?, ?, ?, ?)
|
149 |
-
''', (eval_data['video_id'], eval_data['question'], eval_data['answer'],
|
150 |
-
eval_data['relevance'], eval_data['explanation']))
|
151 |
-
conn.commit()
|
152 |
-
print("Evaluation results saved to database")
|
153 |
-
|
154 |
-
def run_full_evaluation(self, rag_system, ground_truth_file, prompt_template=None):
|
155 |
-
# Load ground truth
|
156 |
-
ground_truth = pd.read_csv(ground_truth_file)
|
157 |
-
|
158 |
-
# Evaluate RAG
|
159 |
-
rag_evaluations = self.evaluate_rag(rag_system, ground_truth_file, prompt_template)
|
160 |
-
|
161 |
-
# Evaluate search performance
|
162 |
-
def search_function(query, video_id):
|
163 |
-
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
|
164 |
-
if index_name:
|
165 |
-
return rag_system.data_processor.search(query, num_results=10, method='hybrid', index_name=index_name)
|
166 |
-
return []
|
167 |
-
|
168 |
-
search_performance = self.evaluate_search(ground_truth, search_function)
|
169 |
-
|
170 |
-
# Optimize search parameters
|
171 |
-
param_ranges = {'content': (0.0, 3.0)} # Example parameter range
|
172 |
-
|
173 |
-
def objective_function(params):
|
174 |
-
def parameterized_search(query, video_id):
|
175 |
-
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
|
176 |
-
if index_name:
|
177 |
-
return rag_system.data_processor.search(query, num_results=10, method='hybrid', index_name=index_name, boost_dict=params)
|
178 |
-
return []
|
179 |
-
return self.evaluate_search(ground_truth, parameterized_search)['mrr']
|
180 |
-
|
181 |
-
best_params, best_score = self.simple_optimize(param_ranges, objective_function)
|
182 |
-
|
183 |
-
return {
|
184 |
-
"rag_evaluations": rag_evaluations,
|
185 |
-
"search_performance": search_performance,
|
186 |
-
"best_params": best_params,
|
187 |
-
"best_score": best_score
|
188 |
-
}
|
189 |
-
|
190 |
|
191 |
def hit_rate(self, relevance_total):
|
192 |
return sum(any(line) for line in relevance_total) / len(relevance_total)
|
@@ -207,7 +170,7 @@ class EvaluationSystem:
|
|
207 |
best_score = float('-inf')
|
208 |
for _ in range(n_iterations):
|
209 |
current_params = {param: np.random.uniform(min_val, max_val)
|
210 |
-
|
211 |
current_score = objective_function(current_params)
|
212 |
if current_score > best_score:
|
213 |
best_score = current_score
|
@@ -224,4 +187,46 @@ class EvaluationSystem:
|
|
224 |
return {
|
225 |
'hit_rate': self.hit_rate(relevance_total),
|
226 |
'mrr': self.mrr(relevance_total),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
}
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import json
|
|
|
5 |
import requests
|
|
|
6 |
from tqdm import tqdm
|
7 |
import csv
|
8 |
+
import logging
|
9 |
+
import sys
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.INFO,
|
15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
16 |
+
stream=sys.stdout
|
17 |
+
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
|
20 |
class EvaluationSystem:
|
21 |
def __init__(self, data_processor, database_handler):
|
22 |
self.data_processor = data_processor
|
23 |
self.db_handler = database_handler
|
24 |
+
# Initialize the model
|
25 |
+
self.model = pipeline(
|
26 |
+
"text-generation",
|
27 |
+
model="google/flan-t5-base",
|
28 |
+
device=-1 # Use CPU
|
29 |
+
)
|
30 |
+
logger.info("Initialized evaluation system with flan-t5-base model")
|
31 |
+
|
32 |
+
def generate_llm_response(self, prompt):
|
33 |
+
"""Generate response using Hugging Face model"""
|
34 |
+
try:
|
35 |
+
response = self.model(
|
36 |
+
prompt,
|
37 |
+
max_length=512,
|
38 |
+
min_length=64,
|
39 |
+
num_return_sequences=1
|
40 |
+
)[0]['generated_text']
|
41 |
+
return response
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Error generating response: {str(e)}")
|
44 |
+
return None
|
45 |
|
46 |
def relevance_scoring(self, query, retrieved_docs, top_k=5):
|
47 |
query_embedding = self.data_processor.embedding_model.encode(query)
|
|
|
65 |
result = cursor.fetchone()
|
66 |
return result[0] if result[0] is not None else 0
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def llm_as_judge(self, question, generated_answer, prompt_template):
|
69 |
+
prompt = prompt_template.format(
|
70 |
+
question=question,
|
71 |
+
answer_llm=generated_answer
|
72 |
+
)
|
73 |
try:
|
74 |
+
response = self.generate_llm_response(prompt)
|
75 |
+
if response:
|
76 |
+
# Try to parse JSON response
|
77 |
+
try:
|
78 |
+
evaluation = json.loads(response)
|
79 |
+
return evaluation
|
80 |
+
except json.JSONDecodeError:
|
81 |
+
logger.error("Failed to parse LLM response as JSON")
|
82 |
+
return None
|
83 |
+
return None
|
84 |
except Exception as e:
|
85 |
+
logger.error(f"Error in LLM evaluation: {str(e)}")
|
86 |
return None
|
87 |
|
88 |
def evaluate_rag(self, rag_system, ground_truth_file, prompt_template=None):
|
89 |
try:
|
90 |
ground_truth = pd.read_csv(ground_truth_file)
|
91 |
except FileNotFoundError:
|
92 |
+
logger.error("Ground truth file not found. Please generate ground truth data first.")
|
93 |
return None
|
94 |
|
95 |
evaluations = []
|
|
|
101 |
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
|
102 |
|
103 |
if not index_name:
|
104 |
+
logger.warning(f"No index found for video {video_id}. Skipping this question.")
|
105 |
continue
|
106 |
|
107 |
try:
|
108 |
answer_llm, _ = rag_system.query(question, search_method='hybrid', index_name=index_name)
|
109 |
except ValueError as e:
|
110 |
+
logger.error(f"Error querying RAG system: {str(e)}")
|
111 |
continue
|
112 |
|
113 |
if prompt_template:
|
|
|
131 |
})
|
132 |
|
133 |
# Save evaluations to CSV
|
134 |
+
if evaluations:
|
135 |
+
csv_path = 'data/evaluation_results.csv'
|
136 |
+
with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile:
|
137 |
+
fieldnames = ['video_id', 'question', 'answer', 'relevance', 'explanation']
|
138 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
139 |
+
writer.writeheader()
|
140 |
+
for eval_data in evaluations:
|
141 |
+
writer.writerow(eval_data)
|
142 |
+
logger.info(f"Evaluation results saved to {csv_path}")
|
143 |
+
|
144 |
+
# Save evaluations to database
|
145 |
+
self.save_evaluations_to_db(evaluations)
|
146 |
|
147 |
return evaluations
|
148 |
|
149 |
def save_evaluations_to_db(self, evaluations):
|
150 |
+
for eval_data in evaluations:
|
151 |
+
self.db_handler.save_rag_evaluation(eval_data)
|
152 |
+
logger.info("Evaluation results saved to database")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
def hit_rate(self, relevance_total):
|
155 |
return sum(any(line) for line in relevance_total) / len(relevance_total)
|
|
|
170 |
best_score = float('-inf')
|
171 |
for _ in range(n_iterations):
|
172 |
current_params = {param: np.random.uniform(min_val, max_val)
|
173 |
+
for param, (min_val, max_val) in param_ranges.items()}
|
174 |
current_score = objective_function(current_params)
|
175 |
if current_score > best_score:
|
176 |
best_score = current_score
|
|
|
187 |
return {
|
188 |
'hit_rate': self.hit_rate(relevance_total),
|
189 |
'mrr': self.mrr(relevance_total),
|
190 |
+
}
|
191 |
+
|
192 |
+
def run_full_evaluation(self, rag_system, ground_truth_file, prompt_template=None):
|
193 |
+
# Load ground truth
|
194 |
+
ground_truth = pd.read_csv(ground_truth_file)
|
195 |
+
|
196 |
+
# Evaluate RAG
|
197 |
+
rag_evaluations = self.evaluate_rag(rag_system, ground_truth_file, prompt_template)
|
198 |
+
|
199 |
+
# Evaluate search performance
|
200 |
+
def search_function(query, video_id):
|
201 |
+
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
|
202 |
+
if index_name:
|
203 |
+
return rag_system.data_processor.search(query, num_results=10, method='hybrid', index_name=index_name)
|
204 |
+
return []
|
205 |
+
|
206 |
+
search_performance = self.evaluate_search(ground_truth, search_function)
|
207 |
+
|
208 |
+
# Optimize search parameters
|
209 |
+
param_ranges = {'content': (0.0, 3.0)} # Example parameter range
|
210 |
+
|
211 |
+
def objective_function(params):
|
212 |
+
def parameterized_search(query, video_id):
|
213 |
+
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
|
214 |
+
if index_name:
|
215 |
+
return rag_system.data_processor.search(
|
216 |
+
query,
|
217 |
+
num_results=10,
|
218 |
+
method='hybrid',
|
219 |
+
index_name=index_name,
|
220 |
+
boost_dict=params
|
221 |
+
)
|
222 |
+
return []
|
223 |
+
return self.evaluate_search(ground_truth, parameterized_search)['mrr']
|
224 |
+
|
225 |
+
best_params, best_score = self.simple_optimize(param_ranges, objective_function)
|
226 |
+
|
227 |
+
return {
|
228 |
+
"rag_evaluations": rag_evaluations,
|
229 |
+
"search_performance": search_performance,
|
230 |
+
"best_params": best_params,
|
231 |
+
"best_score": best_score
|
232 |
}
|