Spaces:
Running
Running
Update app/generate_ground_truth.py
Browse files- app/generate_ground_truth.py +21 -54
app/generate_ground_truth.py
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
import pandas as pd
|
2 |
import json
|
3 |
from tqdm import tqdm
|
4 |
-
import ollama
|
5 |
-
from elasticsearch import Elasticsearch
|
6 |
-
import sqlite3
|
7 |
import logging
|
8 |
import os
|
9 |
-
import re
|
10 |
import sys
|
|
|
|
|
11 |
|
12 |
-
# Configure logging
|
13 |
logging.basicConfig(
|
14 |
level=logging.INFO,
|
15 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
@@ -18,27 +16,11 @@ logging.basicConfig(
|
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
def extract_model_name(index_name):
|
21 |
-
# Extract the model name from the index name
|
22 |
match = re.search(r'video_[^_]+_(.+)$', index_name)
|
23 |
if match:
|
24 |
return match.group(1)
|
25 |
return None
|
26 |
|
27 |
-
def get_transcript_from_elasticsearch(es, index_name, video_id):
|
28 |
-
try:
|
29 |
-
result = es.search(index=index_name, body={
|
30 |
-
"query": {
|
31 |
-
"match": {
|
32 |
-
"video_id": video_id
|
33 |
-
}
|
34 |
-
}
|
35 |
-
})
|
36 |
-
if result['hits']['hits']:
|
37 |
-
return result['hits']['hits'][0]['_source']['content']
|
38 |
-
except Exception as e:
|
39 |
-
logger.error(f"Error retrieving transcript from Elasticsearch: {str(e)}")
|
40 |
-
return None
|
41 |
-
|
42 |
def get_transcript_from_sqlite(db_path, video_id):
|
43 |
try:
|
44 |
conn = sqlite3.connect(db_path)
|
@@ -73,13 +55,12 @@ def generate_questions(transcript, max_retries=3):
|
|
73 |
retries = 0
|
74 |
|
75 |
while len(all_questions) < 10 and retries < max_retries:
|
76 |
-
prompt = prompt_template.format(transcript=transcript)
|
77 |
try:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
questions = json.loads(response
|
83 |
all_questions.update(questions)
|
84 |
except Exception as e:
|
85 |
logger.error(f"Error generating questions: {str(e)}")
|
@@ -91,19 +72,11 @@ def generate_questions(transcript, max_retries=3):
|
|
91 |
return {"questions": list(all_questions)[:10]}
|
92 |
|
93 |
def generate_ground_truth(db_handler, data_processor, video_id):
|
94 |
-
es = Elasticsearch([f'http://{os.getenv("ELASTICSEARCH_HOST", "localhost")}:{os.getenv("ELASTICSEARCH_PORT", "9200")}'])
|
95 |
-
|
96 |
# Get existing questions for this video to avoid duplicates
|
97 |
existing_questions = set(q[1] for q in db_handler.get_ground_truth_by_video(video_id))
|
98 |
|
99 |
-
transcript
|
100 |
-
|
101 |
-
|
102 |
-
if index_name:
|
103 |
-
transcript = get_transcript_from_elasticsearch(es, index_name, video_id)
|
104 |
-
|
105 |
-
if not transcript:
|
106 |
-
transcript = db_handler.get_transcript_content(video_id)
|
107 |
|
108 |
if not transcript:
|
109 |
logger.error(f"Failed to retrieve transcript for video {video_id}")
|
@@ -141,10 +114,18 @@ def generate_ground_truth(db_handler, data_processor, video_id):
|
|
141 |
logger.info(f"Ground truth data saved to {csv_path}")
|
142 |
return df
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def get_ground_truth_display_data(db_handler, video_id=None, channel_name=None):
|
145 |
"""Get ground truth data from both database and CSV file"""
|
146 |
-
import pandas as pd
|
147 |
-
|
148 |
# Try to get data from database first
|
149 |
if video_id:
|
150 |
data = db_handler.get_ground_truth_by_video(video_id)
|
@@ -203,18 +184,4 @@ def generate_ground_truth_for_all_videos(db_handler, data_processor):
|
|
203 |
return df
|
204 |
else:
|
205 |
logger.error("Failed to generate questions for any video.")
|
206 |
-
return None
|
207 |
-
|
208 |
-
def get_evaluation_display_data(video_id=None):
|
209 |
-
"""Get evaluation data from both database and CSV file"""
|
210 |
-
import pandas as pd
|
211 |
-
|
212 |
-
# Try to get data from CSV
|
213 |
-
try:
|
214 |
-
csv_df = pd.read_csv('data/evaluation_results.csv')
|
215 |
-
if video_id:
|
216 |
-
csv_df = csv_df[csv_df['video_id'] == video_id]
|
217 |
-
except FileNotFoundError:
|
218 |
-
csv_df = pd.DataFrame()
|
219 |
-
|
220 |
-
return csv_df
|
|
|
1 |
import pandas as pd
|
2 |
import json
|
3 |
from tqdm import tqdm
|
|
|
|
|
|
|
4 |
import logging
|
5 |
import os
|
|
|
6 |
import sys
|
7 |
+
import re
|
8 |
+
import sqlite3
|
9 |
|
10 |
+
# Configure logging
|
11 |
logging.basicConfig(
|
12 |
level=logging.INFO,
|
13 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
def extract_model_name(index_name):
|
|
|
19 |
match = re.search(r'video_[^_]+_(.+)$', index_name)
|
20 |
if match:
|
21 |
return match.group(1)
|
22 |
return None
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def get_transcript_from_sqlite(db_path, video_id):
|
25 |
try:
|
26 |
conn = sqlite3.connect(db_path)
|
|
|
55 |
retries = 0
|
56 |
|
57 |
while len(all_questions) < 10 and retries < max_retries:
|
|
|
58 |
try:
|
59 |
+
model = pipeline("text-generation", model="google/flan-t5-base", device=-1)
|
60 |
+
response = model(prompt_template.format(transcript=transcript),
|
61 |
+
max_length=1024,
|
62 |
+
num_return_sequences=1)[0]['generated_text']
|
63 |
+
questions = json.loads(response)['questions']
|
64 |
all_questions.update(questions)
|
65 |
except Exception as e:
|
66 |
logger.error(f"Error generating questions: {str(e)}")
|
|
|
72 |
return {"questions": list(all_questions)[:10]}
|
73 |
|
74 |
def generate_ground_truth(db_handler, data_processor, video_id):
|
|
|
|
|
75 |
# Get existing questions for this video to avoid duplicates
|
76 |
existing_questions = set(q[1] for q in db_handler.get_ground_truth_by_video(video_id))
|
77 |
|
78 |
+
# Get transcript from SQLite
|
79 |
+
transcript = get_transcript_from_sqlite(db_handler.db_path, video_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
if not transcript:
|
82 |
logger.error(f"Failed to retrieve transcript for video {video_id}")
|
|
|
114 |
logger.info(f"Ground truth data saved to {csv_path}")
|
115 |
return df
|
116 |
|
117 |
+
def get_evaluation_display_data(video_id=None):
|
118 |
+
"""Get evaluation data from CSV file"""
|
119 |
+
try:
|
120 |
+
csv_df = pd.read_csv('data/evaluation_results.csv')
|
121 |
+
if video_id:
|
122 |
+
csv_df = csv_df[csv_df['video_id'] == video_id]
|
123 |
+
return csv_df
|
124 |
+
except FileNotFoundError:
|
125 |
+
return pd.DataFrame()
|
126 |
+
|
127 |
def get_ground_truth_display_data(db_handler, video_id=None, channel_name=None):
|
128 |
"""Get ground truth data from both database and CSV file"""
|
|
|
|
|
129 |
# Try to get data from database first
|
130 |
if video_id:
|
131 |
data = db_handler.get_ground_truth_by_video(video_id)
|
|
|
184 |
return df
|
185 |
else:
|
186 |
logger.error("Failed to generate questions for any video.")
|
187 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|