ferid197's picture
Upload folder using huggingface_hub
e81015c verified
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore
# and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
# and the original BAdam's implementation: https://github.com/Ledzy/BAdam
# and the HuggingFace's TRL library: https://github.com/huggingface/trl
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from collections.abc import Mapping
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
import torch
from transformers import Trainer
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled
from transformers.optimization import get_scheduler
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
from typing_extensions import override
from ..extras import logging
from ..extras.constants import IGNORE_INDEX, SWANLAB_CONFIG
from ..extras.packages import is_apollo_available, is_galore_available, is_ray_available
from ..hparams import FinetuningArguments, ModelArguments
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params
if is_galore_available():
from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit # type: ignore
if is_apollo_available():
from apollo_torch import APOLLOAdamW # type: ignore
if is_ray_available():
import ray
from ray.train import RunConfig, ScalingConfig
from ray.train.torch import TorchTrainer
if TYPE_CHECKING:
from transformers import PreTrainedModel, TrainerCallback, TrainerState
from trl import AutoModelForCausalLMWithValueHead
from ..hparams import DataArguments, RayArguments, TrainingArguments
logger = logging.get_logger(__name__)
class DummyOptimizer(torch.optim.Optimizer):
r"""A dummy optimizer used for the GaLore or APOLLO algorithm."""
def __init__(
self, lr: float = 1e-3, optimizer_dict: Optional[dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None
) -> None:
dummy_tensor = torch.randn(1, 1)
self.optimizer_dict = optimizer_dict
super().__init__([dummy_tensor], {"lr": lr})
@override
def zero_grad(self, set_to_none: bool = True) -> None:
pass
@override
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
pass
def create_modelcard_and_push(
trainer: "Trainer",
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "TrainingArguments",
finetuning_args: "FinetuningArguments",
) -> None:
kwargs = {
"tasks": "text-generation",
"finetuned_from": model_args.model_name_or_path,
"tags": ["llama-factory", finetuning_args.finetuning_type],
}
if data_args.dataset is not None:
kwargs["dataset"] = data_args.dataset
if model_args.use_unsloth:
kwargs["tags"] = kwargs["tags"] + ["unsloth"]
if not training_args.do_train:
pass
elif training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(license="other", **kwargs) # prevent from connecting to hub
def create_ref_model(
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]:
r"""Create reference model for PPO/DPO training. Evaluation mode is not supported.
The valuehead parameter is randomly initialized since it is useless for PPO training.
"""
if finetuning_args.ref_model is not None:
ref_model_args = ModelArguments.copyfrom(
model_args,
model_name_or_path=finetuning_args.ref_model,
adapter_name_or_path=finetuning_args.ref_model_adapters,
quantization_bit=finetuning_args.ref_model_quantization_bit,
)
ref_finetuning_args = FinetuningArguments()
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
ref_model = load_model(
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
)
logger.info_rank0(f"Created reference model from {finetuning_args.ref_model}")
else:
if finetuning_args.finetuning_type == "lora":
ref_model = None
else:
ref_model_args = ModelArguments.copyfrom(model_args)
ref_finetuning_args = FinetuningArguments()
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
ref_model = load_model(
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
)
logger.info_rank0("Created reference model from the model itself.")
return ref_model
def create_reward_model(
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
) -> Optional["AutoModelForCausalLMWithValueHead"]:
r"""Create reward model for PPO training."""
if finetuning_args.reward_model_type == "api":
assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
logger.info_rank0(f"Use reward server {finetuning_args.reward_model}")
return finetuning_args.reward_model
elif finetuning_args.reward_model_type == "lora":
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090
if "default" in name:
param.data = param.data.to(torch.float32) # trainable params should in fp32
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
assert vhead_params is not None, "Reward model is not correctly loaded."
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
model.register_buffer(
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
)
model.register_buffer(
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
)
logger.info_rank0(f"Loaded adapter weights of reward model from {finetuning_args.reward_model}")
return None
else:
reward_model_args = ModelArguments.copyfrom(
model_args,
model_name_or_path=finetuning_args.reward_model,
adapter_name_or_path=finetuning_args.reward_model_adapters,
quantization_bit=finetuning_args.reward_model_quantization_bit,
)
reward_finetuning_args = FinetuningArguments()
tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
reward_model = load_model(
tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
)
logger.info_rank0(f"Loaded full weights of reward model from {finetuning_args.reward_model}")
logger.warning_rank0("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
return reward_model
def _get_decay_parameter_names(model: "PreTrainedModel") -> list[str]:
r"""Return a list of names of parameters with weight decay. (weights in non-layernorm layers)."""
decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
return decay_parameters
def _create_galore_optimizer(
model: "PreTrainedModel",
training_args: "TrainingArguments",
finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
else:
galore_targets = finetuning_args.galore_target
galore_params: list[torch.nn.Parameter] = []
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
for param in module.parameters():
if param.requires_grad and len(param.shape) > 1:
galore_params.append(param)
galore_kwargs = {
"rank": finetuning_args.galore_rank,
"update_proj_gap": finetuning_args.galore_update_interval,
"scale": finetuning_args.galore_scale,
"proj_type": finetuning_args.galore_proj_type,
}
id_galore_params = {id(param) for param in galore_params}
decay_params, nodecay_params = [], [] # they are non-galore parameters
trainable_params: list[torch.nn.Parameter] = [] # galore_params + decay_params + nodecay_params
decay_param_names = _get_decay_parameter_names(model)
for name, param in model.named_parameters():
if param.requires_grad:
trainable_params.append(param)
if id(param) not in id_galore_params:
if name in decay_param_names:
decay_params.append(param)
else:
nodecay_params.append(param)
_, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
if training_args.optim == "adamw_torch":
optim_class = GaLoreAdamW
elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
optim_class = GaLoreAdamW8bit
elif training_args.optim == "adafactor":
optim_class = GaLoreAdafactor
else:
raise NotImplementedError(f"Unknown optim: {training_args.optim}.")
if finetuning_args.galore_layerwise:
logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise GaLore.")
if training_args.gradient_accumulation_steps != 1:
raise ValueError("Per-layer GaLore does not support gradient accumulation.")
optimizer_dict: dict[torch.Tensor, torch.optim.Optimizer] = {}
for param in nodecay_params:
param_groups = [dict(params=[param], weight_decay=0.0)]
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
for param in decay_params:
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
for param in galore_params: # galore params have weight decay
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
def optimizer_hook(param: "torch.nn.Parameter"):
if param.grad is not None:
optimizer_dict[param].step()
optimizer_dict[param].zero_grad()
for param in trainable_params:
param.register_post_accumulate_grad_hook(optimizer_hook)
optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
else:
param_groups = [
dict(params=nodecay_params, weight_decay=0.0),
dict(params=decay_params, weight_decay=training_args.weight_decay),
dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
]
optimizer = optim_class(param_groups, **optim_kwargs)
logger.info_rank0(
f"Using GaLore optimizer with args: {galore_kwargs}. "
"It may cause hanging at the start of training, wait patiently."
)
return optimizer
def _create_apollo_optimizer(
model: "PreTrainedModel",
training_args: "TrainingArguments",
finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
if len(finetuning_args.apollo_target) == 1 and finetuning_args.apollo_target[0] == "all":
apollo_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
else:
apollo_targets = finetuning_args.apollo_target
apollo_params: list[torch.nn.Parameter] = []
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear) and any(target in name for target in apollo_targets):
for param in module.parameters():
if param.requires_grad and len(param.shape) > 1:
apollo_params.append(param)
apollo_kwargs = {
"rank": finetuning_args.apollo_rank,
"proj": finetuning_args.apollo_proj,
"proj_type": finetuning_args.apollo_proj_type,
"update_proj_gap": finetuning_args.apollo_update_interval,
"scale": finetuning_args.apollo_scale,
"scale_type": finetuning_args.apollo_scale_type,
"scale_front": finetuning_args.apollo_scale_front,
}
id_apollo_params = {id(param) for param in apollo_params}
decay_params, nodecay_params = [], [] # they are non-apollo parameters
trainable_params: list[torch.nn.Parameter] = [] # apollo_params + decay_params + nodecay_params
decay_param_names = _get_decay_parameter_names(model)
for name, param in model.named_parameters():
if param.requires_grad:
trainable_params.append(param)
if id(param) not in id_apollo_params:
if name in decay_param_names:
decay_params.append(param)
else:
nodecay_params.append(param)
_, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
if training_args.optim == "adamw_torch":
optim_class = APOLLOAdamW
else:
raise NotImplementedError(f"Unknown optim: {training_args.optim}.")
if finetuning_args.apollo_layerwise:
logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise APOLLO.")
if training_args.gradient_accumulation_steps != 1:
raise ValueError("Per-layer APOLLO does not support gradient accumulation.")
optimizer_dict: dict[torch.Tensor, torch.optim.Optimizer] = {}
for param in nodecay_params:
param_groups = [dict(params=[param], weight_decay=0.0)]
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
for param in decay_params:
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
for param in apollo_params: # apollo params have weight decay
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **apollo_kwargs)]
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
def optimizer_hook(param: "torch.nn.Parameter"):
if param.grad is not None:
optimizer_dict[param].step()
optimizer_dict[param].zero_grad()
for param in trainable_params:
param.register_post_accumulate_grad_hook(optimizer_hook)
optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
else:
param_groups = [
dict(params=nodecay_params, weight_decay=0.0),
dict(params=decay_params, weight_decay=training_args.weight_decay),
dict(params=apollo_params, weight_decay=training_args.weight_decay, **apollo_kwargs),
]
optimizer = optim_class(param_groups, **optim_kwargs)
logger.info_rank0(f"Using APOLLO optimizer with args: {apollo_kwargs}.")
return optimizer
def _create_loraplus_optimizer(
model: "PreTrainedModel",
training_args: "TrainingArguments",
finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
default_lr = training_args.learning_rate
loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
embedding_lr = finetuning_args.loraplus_lr_embedding
decay_param_names = _get_decay_parameter_names(model)
param_dict: dict[str, list[torch.nn.Parameter]] = {
"lora_a": [],
"lora_b": [],
"lora_b_nodecay": [],
"embedding": [],
}
for name, param in model.named_parameters():
if param.requires_grad:
if "lora_embedding_B" in name:
param_dict["embedding"].append(param)
elif "lora_B" in name or param.ndim == 1:
if name in decay_param_names:
param_dict["lora_b"].append(param)
else:
param_dict["lora_b_nodecay"].append(param)
else:
param_dict["lora_a"].append(param)
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
param_groups = [
dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay),
dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay),
dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0),
dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
]
optimizer = optim_class(param_groups, **optim_kwargs)
logger.info_rank0(f"Using LoRA+ optimizer with loraplus lr ratio {finetuning_args.loraplus_lr_ratio:.2f}.")
return optimizer
def _create_badam_optimizer(
model: "PreTrainedModel",
training_args: "TrainingArguments",
finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
decay_params, nodecay_params = [], []
decay_param_names = _get_decay_parameter_names(model)
for name, param in model.named_parameters():
if param.requires_grad:
if name in decay_param_names:
decay_params.append(param)
else:
nodecay_params.append(param)
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
param_groups = [
dict(params=nodecay_params, weight_decay=0.0),
dict(params=decay_params, weight_decay=training_args.weight_decay),
]
if finetuning_args.badam_mode == "layer":
from badam import BlockOptimizer # type: ignore
base_optimizer = optim_class(param_groups, **optim_kwargs)
optimizer = BlockOptimizer(
base_optimizer=base_optimizer,
named_parameters_list=list(model.named_parameters()),
block_prefix_list=None,
switch_block_every=finetuning_args.badam_switch_interval,
start_block=finetuning_args.badam_start_block,
switch_mode=finetuning_args.badam_switch_mode,
verbose=finetuning_args.badam_verbose,
ds_zero3_enabled=is_deepspeed_zero3_enabled(),
)
logger.info_rank0(
f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
f"switch block every {finetuning_args.badam_switch_interval} steps, "
f"default start block is {finetuning_args.badam_start_block}"
)
elif finetuning_args.badam_mode == "ratio":
from badam import BlockOptimizerRatio # type: ignore
assert finetuning_args.badam_update_ratio > 1e-6
optimizer = BlockOptimizerRatio(
param_groups=param_groups,
named_parameters_list=list(model.named_parameters()),
update_ratio=finetuning_args.badam_update_ratio,
mask_mode=finetuning_args.badam_mask_mode,
verbose=finetuning_args.badam_verbose,
include_embedding=False,
**optim_kwargs,
)
logger.info_rank0(
f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, "
f"mask mode is {finetuning_args.badam_mask_mode}"
)
return optimizer
def _create_adam_mini_optimizer(
model: "PreTrainedModel",
training_args: "TrainingArguments",
) -> "torch.optim.Optimizer":
from adam_mini import Adam_mini # type: ignore
hidden_size = getattr(model.config, "hidden_size", None)
num_q_head = getattr(model.config, "num_attention_heads", None)
num_kv_head = getattr(model.config, "num_key_value_heads", None)
optimizer = Adam_mini(
named_parameters=model.named_parameters(),
lr=training_args.learning_rate,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
model_sharding=is_fsdp_enabled() or is_deepspeed_zero3_enabled(),
dim=hidden_size,
n_heads=num_q_head,
n_kv_heads=num_kv_head,
)
logger.info_rank0("Using Adam-mini optimizer.")
return optimizer
def _create_muon_optimizer(
model: "PreTrainedModel",
training_args: "TrainingArguments",
) -> "torch.optim.Optimizer":
from ..third_party.muon import Muon
muon_params, adamw_params = [], []
for name, param in model.named_parameters():
if param.requires_grad:
# Use Muon for 2D parameters that aren't embeddings or heads
if param.ndim == 2 and "embed" not in name and "lm_head" not in name:
muon_params.append(param)
else:
adamw_params.append(param)
optimizer = Muon(
lr=training_args.learning_rate,
wd=training_args.weight_decay,
muon_params=muon_params,
adamw_params=adamw_params,
adamw_betas=(training_args.adam_beta1, training_args.adam_beta2),
adamw_eps=training_args.adam_epsilon,
)
logger.info_rank0(
f"Using Muon optimizer with {len(muon_params)} Muon params and {len(adamw_params)} AdamW params."
)
return optimizer
def create_custom_optimizer(
model: "PreTrainedModel",
training_args: "TrainingArguments",
finetuning_args: "FinetuningArguments",
) -> Optional["torch.optim.Optimizer"]:
if finetuning_args.use_galore:
return _create_galore_optimizer(model, training_args, finetuning_args)
if finetuning_args.use_apollo:
return _create_apollo_optimizer(model, training_args, finetuning_args)
if finetuning_args.loraplus_lr_ratio is not None:
return _create_loraplus_optimizer(model, training_args, finetuning_args)
if finetuning_args.use_badam:
return _create_badam_optimizer(model, training_args, finetuning_args)
if finetuning_args.use_adam_mini:
return _create_adam_mini_optimizer(model, training_args)
if finetuning_args.use_muon:
return _create_muon_optimizer(model, training_args)
def create_custom_scheduler(
training_args: "TrainingArguments",
num_training_steps: int,
optimizer: Optional["torch.optim.Optimizer"] = None,
) -> None:
if training_args.lr_scheduler_type == "warmup_stable_decay":
num_warmup_steps = training_args.get_warmup_steps(num_training_steps)
remaining_steps = num_training_steps - num_warmup_steps
num_stable_steps = remaining_steps // 3 # use 1/3 for stable by default
num_decay_steps = remaining_steps - num_stable_steps
scheduler_kwargs = training_args.lr_scheduler_kwargs or {}
default_kwargs = {
"num_stable_steps": num_stable_steps,
"num_decay_steps": num_decay_steps,
}
for key, value in default_kwargs.items():
if key not in scheduler_kwargs:
scheduler_kwargs[key] = value
training_args.lr_scheduler_kwargs = scheduler_kwargs
if optimizer is not None and isinstance(optimizer, DummyOptimizer):
optimizer_dict = optimizer.optimizer_dict
scheduler_dict: dict[torch.nn.Parameter, torch.optim.lr_scheduler.LRScheduler] = {}
for param in optimizer_dict.keys():
scheduler_dict[param] = get_scheduler(
training_args.lr_scheduler_type,
optimizer=optimizer_dict[param],
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
scheduler_specific_kwargs=training_args.lr_scheduler_kwargs,
)
def scheduler_hook(param: "torch.nn.Parameter"):
scheduler_dict[param].step()
for param in optimizer_dict.keys():
param.register_post_accumulate_grad_hook(scheduler_hook)
def get_batch_logps(
logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX
) -> tuple["torch.Tensor", "torch.Tensor"]:
r"""Compute the log probabilities of the given labels under the given logits.
Returns:
logps: A tensor of shape (batch_size,) containing the sum of log probabilities.
valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens.
"""
if logits.shape[:-1] != labels.shape:
raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.")
labels = labels[:, 1:].clone()
logits = logits[:, :-1, :]
loss_mask = labels != label_pad_token_id
labels[labels == label_pad_token_id] = 0 # dummy token
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)
def nested_detach(
tensors: Union["torch.Tensor", list["torch.Tensor"], tuple["torch.Tensor"], dict[str, "torch.Tensor"]],
clone: bool = False,
):
r"""Detach `tensors` (even if it's a nested list/tuple/dict of tensors)."""
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_detach(t, clone=clone) for t in tensors)
elif isinstance(tensors, Mapping):
return type(tensors)({k: nested_detach(t, clone=clone) for k, t in tensors.items()})
if isinstance(tensors, torch.Tensor):
if clone:
return tensors.detach().clone()
else:
return tensors.detach()
else:
return tensors
def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCallback":
r"""Get the callback for logging to SwanLab."""
import swanlab # type: ignore
from swanlab.integration.transformers import SwanLabCallback # type: ignore
if finetuning_args.swanlab_api_key is not None:
swanlab.login(api_key=finetuning_args.swanlab_api_key)
if finetuning_args.swanlab_lark_webhook_url is not None:
from swanlab.plugin.notification import LarkCallback # type: ignore
lark_callback = LarkCallback(
webhook_url=finetuning_args.swanlab_lark_webhook_url,
secret=finetuning_args.swanlab_lark_secret,
)
swanlab.register_callbacks([lark_callback])
class SwanLabCallbackExtension(SwanLabCallback):
def setup(self, args: "TrainingArguments", state: "TrainerState", model: "PreTrainedModel", **kwargs):
if not state.is_world_process_zero:
return
super().setup(args, state, model, **kwargs)
try:
if hasattr(self, "_swanlab"):
swanlab_public_config = self._swanlab.get_run().public.json()
else: # swanlab <= 0.4.9
swanlab_public_config = self._experiment.get_run().public.json()
except Exception:
swanlab_public_config = {}
with open(os.path.join(args.output_dir, SWANLAB_CONFIG), "w") as f:
f.write(json.dumps(swanlab_public_config, indent=2))
swanlab_callback = SwanLabCallbackExtension(
project=finetuning_args.swanlab_project,
workspace=finetuning_args.swanlab_workspace,
experiment_name=finetuning_args.swanlab_run_name,
mode=finetuning_args.swanlab_mode,
config={"Framework": "🦙LlamaFactory"},
logdir=finetuning_args.swanlab_logdir,
)
return swanlab_callback
def get_ray_trainer(
training_function: Callable,
train_loop_config: dict[str, Any],
ray_args: "RayArguments",
) -> "TorchTrainer":
if not ray_args.use_ray:
raise ValueError("Ray was not enabled. Please set `USE_RAY=1` to enable ray.")
if ray_args.ray_init_kwargs is not None:
ray.init(**ray_args.ray_init_kwargs)
if ray_args.ray_storage_filesystem is not None:
# this means we are using s3/gcs
storage_path = ray_args.ray_storage_path
else:
storage_path = Path(ray_args.ray_storage_path).absolute().as_posix()
trainer = TorchTrainer(
training_function,
train_loop_config=train_loop_config,
scaling_config=ScalingConfig(
num_workers=ray_args.ray_num_workers,
resources_per_worker=ray_args.resources_per_worker,
placement_strategy=ray_args.placement_strategy,
use_gpu=True,
),
run_config=RunConfig(
name=ray_args.ray_run_name,
storage_filesystem=ray_args.ray_storage_filesystem,
storage_path=storage_path,
),
)
return trainer