File size: 29,738 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore
# and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
# and the original BAdam's implementation: https://github.com/Ledzy/BAdam
# and the HuggingFace's TRL library: https://github.com/huggingface/trl
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from collections.abc import Mapping
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Optional, Union

import torch
from transformers import Trainer
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled
from transformers.optimization import get_scheduler
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
from typing_extensions import override

from ..extras import logging
from ..extras.constants import IGNORE_INDEX, SWANLAB_CONFIG
from ..extras.packages import is_apollo_available, is_galore_available, is_ray_available
from ..hparams import FinetuningArguments, ModelArguments
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params


if is_galore_available():
    from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit  # type: ignore


if is_apollo_available():
    from apollo_torch import APOLLOAdamW  # type: ignore


if is_ray_available():
    import ray
    from ray.train import RunConfig, ScalingConfig
    from ray.train.torch import TorchTrainer


if TYPE_CHECKING:
    from transformers import PreTrainedModel, TrainerCallback, TrainerState
    from trl import AutoModelForCausalLMWithValueHead

    from ..hparams import DataArguments, RayArguments, TrainingArguments


logger = logging.get_logger(__name__)


class DummyOptimizer(torch.optim.Optimizer):
    r"""A dummy optimizer used for the GaLore or APOLLO algorithm."""

    def __init__(
        self, lr: float = 1e-3, optimizer_dict: Optional[dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None
    ) -> None:
        dummy_tensor = torch.randn(1, 1)
        self.optimizer_dict = optimizer_dict
        super().__init__([dummy_tensor], {"lr": lr})

    @override
    def zero_grad(self, set_to_none: bool = True) -> None:
        pass

    @override
    def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
        pass


def create_modelcard_and_push(
    trainer: "Trainer",
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "TrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> None:
    kwargs = {
        "tasks": "text-generation",
        "finetuned_from": model_args.model_name_or_path,
        "tags": ["llama-factory", finetuning_args.finetuning_type],
    }
    if data_args.dataset is not None:
        kwargs["dataset"] = data_args.dataset

    if model_args.use_unsloth:
        kwargs["tags"] = kwargs["tags"] + ["unsloth"]

    if not training_args.do_train:
        pass
    elif training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(license="other", **kwargs)  # prevent from connecting to hub


def create_ref_model(
    model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]:
    r"""Create reference model for PPO/DPO training. Evaluation mode is not supported.

    The valuehead parameter is randomly initialized since it is useless for PPO training.
    """
    if finetuning_args.ref_model is not None:
        ref_model_args = ModelArguments.copyfrom(
            model_args,
            model_name_or_path=finetuning_args.ref_model,
            adapter_name_or_path=finetuning_args.ref_model_adapters,
            quantization_bit=finetuning_args.ref_model_quantization_bit,
        )
        ref_finetuning_args = FinetuningArguments()
        tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
        ref_model = load_model(
            tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
        )
        logger.info_rank0(f"Created reference model from {finetuning_args.ref_model}")
    else:
        if finetuning_args.finetuning_type == "lora":
            ref_model = None
        else:
            ref_model_args = ModelArguments.copyfrom(model_args)
            ref_finetuning_args = FinetuningArguments()
            tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
            ref_model = load_model(
                tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
            )
            logger.info_rank0("Created reference model from the model itself.")

    return ref_model


def create_reward_model(
    model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
) -> Optional["AutoModelForCausalLMWithValueHead"]:
    r"""Create reward model for PPO training."""
    if finetuning_args.reward_model_type == "api":
        assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
        logger.info_rank0(f"Use reward server {finetuning_args.reward_model}")
        return finetuning_args.reward_model
    elif finetuning_args.reward_model_type == "lora":
        model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
        for name, param in model.named_parameters():  # https://github.com/huggingface/peft/issues/1090
            if "default" in name:
                param.data = param.data.to(torch.float32)  # trainable params should in fp32
        vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
        assert vhead_params is not None, "Reward model is not correctly loaded."
        model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
        model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
        model.register_buffer(
            "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
        )
        model.register_buffer(
            "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
        )
        logger.info_rank0(f"Loaded adapter weights of reward model from {finetuning_args.reward_model}")
        return None
    else:
        reward_model_args = ModelArguments.copyfrom(
            model_args,
            model_name_or_path=finetuning_args.reward_model,
            adapter_name_or_path=finetuning_args.reward_model_adapters,
            quantization_bit=finetuning_args.reward_model_quantization_bit,
        )
        reward_finetuning_args = FinetuningArguments()
        tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
        reward_model = load_model(
            tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
        )
        logger.info_rank0(f"Loaded full weights of reward model from {finetuning_args.reward_model}")
        logger.warning_rank0("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
        return reward_model


def _get_decay_parameter_names(model: "PreTrainedModel") -> list[str]:
    r"""Return a list of names of parameters with weight decay. (weights in non-layernorm layers)."""
    decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
    decay_parameters = [name for name in decay_parameters if "bias" not in name]
    return decay_parameters


def _create_galore_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
        galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
    else:
        galore_targets = finetuning_args.galore_target

    galore_params: list[torch.nn.Parameter] = []
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
            for param in module.parameters():
                if param.requires_grad and len(param.shape) > 1:
                    galore_params.append(param)

    galore_kwargs = {
        "rank": finetuning_args.galore_rank,
        "update_proj_gap": finetuning_args.galore_update_interval,
        "scale": finetuning_args.galore_scale,
        "proj_type": finetuning_args.galore_proj_type,
    }

    id_galore_params = {id(param) for param in galore_params}
    decay_params, nodecay_params = [], []  # they are non-galore parameters
    trainable_params: list[torch.nn.Parameter] = []  # galore_params + decay_params + nodecay_params
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            trainable_params.append(param)
            if id(param) not in id_galore_params:
                if name in decay_param_names:
                    decay_params.append(param)
                else:
                    nodecay_params.append(param)

    _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)

    if training_args.optim == "adamw_torch":
        optim_class = GaLoreAdamW
    elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
        optim_class = GaLoreAdamW8bit
    elif training_args.optim == "adafactor":
        optim_class = GaLoreAdafactor
    else:
        raise NotImplementedError(f"Unknown optim: {training_args.optim}.")

    if finetuning_args.galore_layerwise:
        logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise GaLore.")
        if training_args.gradient_accumulation_steps != 1:
            raise ValueError("Per-layer GaLore does not support gradient accumulation.")

        optimizer_dict: dict[torch.Tensor, torch.optim.Optimizer] = {}
        for param in nodecay_params:
            param_groups = [dict(params=[param], weight_decay=0.0)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in decay_params:
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in galore_params:  # galore params have weight decay
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)

        def optimizer_hook(param: "torch.nn.Parameter"):
            if param.grad is not None:
                optimizer_dict[param].step()
                optimizer_dict[param].zero_grad()

        for param in trainable_params:
            param.register_post_accumulate_grad_hook(optimizer_hook)

        optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
    else:
        param_groups = [
            dict(params=nodecay_params, weight_decay=0.0),
            dict(params=decay_params, weight_decay=training_args.weight_decay),
            dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
        ]
        optimizer = optim_class(param_groups, **optim_kwargs)

    logger.info_rank0(
        f"Using GaLore optimizer with args: {galore_kwargs}. "
        "It may cause hanging at the start of training, wait patiently."
    )
    return optimizer


def _create_apollo_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    if len(finetuning_args.apollo_target) == 1 and finetuning_args.apollo_target[0] == "all":
        apollo_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
    else:
        apollo_targets = finetuning_args.apollo_target

    apollo_params: list[torch.nn.Parameter] = []
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear) and any(target in name for target in apollo_targets):
            for param in module.parameters():
                if param.requires_grad and len(param.shape) > 1:
                    apollo_params.append(param)

    apollo_kwargs = {
        "rank": finetuning_args.apollo_rank,
        "proj": finetuning_args.apollo_proj,
        "proj_type": finetuning_args.apollo_proj_type,
        "update_proj_gap": finetuning_args.apollo_update_interval,
        "scale": finetuning_args.apollo_scale,
        "scale_type": finetuning_args.apollo_scale_type,
        "scale_front": finetuning_args.apollo_scale_front,
    }

    id_apollo_params = {id(param) for param in apollo_params}
    decay_params, nodecay_params = [], []  # they are non-apollo parameters
    trainable_params: list[torch.nn.Parameter] = []  # apollo_params + decay_params + nodecay_params
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            trainable_params.append(param)
            if id(param) not in id_apollo_params:
                if name in decay_param_names:
                    decay_params.append(param)
                else:
                    nodecay_params.append(param)

    _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)

    if training_args.optim == "adamw_torch":
        optim_class = APOLLOAdamW
    else:
        raise NotImplementedError(f"Unknown optim: {training_args.optim}.")

    if finetuning_args.apollo_layerwise:
        logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise APOLLO.")
        if training_args.gradient_accumulation_steps != 1:
            raise ValueError("Per-layer APOLLO does not support gradient accumulation.")

        optimizer_dict: dict[torch.Tensor, torch.optim.Optimizer] = {}
        for param in nodecay_params:
            param_groups = [dict(params=[param], weight_decay=0.0)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in decay_params:
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in apollo_params:  # apollo params have weight decay
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **apollo_kwargs)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)

        def optimizer_hook(param: "torch.nn.Parameter"):
            if param.grad is not None:
                optimizer_dict[param].step()
                optimizer_dict[param].zero_grad()

        for param in trainable_params:
            param.register_post_accumulate_grad_hook(optimizer_hook)

        optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
    else:
        param_groups = [
            dict(params=nodecay_params, weight_decay=0.0),
            dict(params=decay_params, weight_decay=training_args.weight_decay),
            dict(params=apollo_params, weight_decay=training_args.weight_decay, **apollo_kwargs),
        ]
        optimizer = optim_class(param_groups, **optim_kwargs)

    logger.info_rank0(f"Using APOLLO optimizer with args: {apollo_kwargs}.")
    return optimizer


def _create_loraplus_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    default_lr = training_args.learning_rate
    loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
    embedding_lr = finetuning_args.loraplus_lr_embedding

    decay_param_names = _get_decay_parameter_names(model)
    param_dict: dict[str, list[torch.nn.Parameter]] = {
        "lora_a": [],
        "lora_b": [],
        "lora_b_nodecay": [],
        "embedding": [],
    }
    for name, param in model.named_parameters():
        if param.requires_grad:
            if "lora_embedding_B" in name:
                param_dict["embedding"].append(param)
            elif "lora_B" in name or param.ndim == 1:
                if name in decay_param_names:
                    param_dict["lora_b"].append(param)
                else:
                    param_dict["lora_b_nodecay"].append(param)
            else:
                param_dict["lora_a"].append(param)

    optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
    param_groups = [
        dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay),
        dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay),
        dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0),
        dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
    ]
    optimizer = optim_class(param_groups, **optim_kwargs)
    logger.info_rank0(f"Using LoRA+ optimizer with loraplus lr ratio {finetuning_args.loraplus_lr_ratio:.2f}.")
    return optimizer


def _create_badam_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    decay_params, nodecay_params = [], []
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            if name in decay_param_names:
                decay_params.append(param)
            else:
                nodecay_params.append(param)

    optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
    param_groups = [
        dict(params=nodecay_params, weight_decay=0.0),
        dict(params=decay_params, weight_decay=training_args.weight_decay),
    ]

    if finetuning_args.badam_mode == "layer":
        from badam import BlockOptimizer  # type: ignore

        base_optimizer = optim_class(param_groups, **optim_kwargs)
        optimizer = BlockOptimizer(
            base_optimizer=base_optimizer,
            named_parameters_list=list(model.named_parameters()),
            block_prefix_list=None,
            switch_block_every=finetuning_args.badam_switch_interval,
            start_block=finetuning_args.badam_start_block,
            switch_mode=finetuning_args.badam_switch_mode,
            verbose=finetuning_args.badam_verbose,
            ds_zero3_enabled=is_deepspeed_zero3_enabled(),
        )
        logger.info_rank0(
            f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
            f"switch block every {finetuning_args.badam_switch_interval} steps, "
            f"default start block is {finetuning_args.badam_start_block}"
        )

    elif finetuning_args.badam_mode == "ratio":
        from badam import BlockOptimizerRatio  # type: ignore

        assert finetuning_args.badam_update_ratio > 1e-6
        optimizer = BlockOptimizerRatio(
            param_groups=param_groups,
            named_parameters_list=list(model.named_parameters()),
            update_ratio=finetuning_args.badam_update_ratio,
            mask_mode=finetuning_args.badam_mask_mode,
            verbose=finetuning_args.badam_verbose,
            include_embedding=False,
            **optim_kwargs,
        )
        logger.info_rank0(
            f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, "
            f"mask mode is {finetuning_args.badam_mask_mode}"
        )

    return optimizer


def _create_adam_mini_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
) -> "torch.optim.Optimizer":
    from adam_mini import Adam_mini  # type: ignore

    hidden_size = getattr(model.config, "hidden_size", None)
    num_q_head = getattr(model.config, "num_attention_heads", None)
    num_kv_head = getattr(model.config, "num_key_value_heads", None)

    optimizer = Adam_mini(
        named_parameters=model.named_parameters(),
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        model_sharding=is_fsdp_enabled() or is_deepspeed_zero3_enabled(),
        dim=hidden_size,
        n_heads=num_q_head,
        n_kv_heads=num_kv_head,
    )
    logger.info_rank0("Using Adam-mini optimizer.")
    return optimizer


def _create_muon_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
) -> "torch.optim.Optimizer":
    from ..third_party.muon import Muon

    muon_params, adamw_params = [], []
    for name, param in model.named_parameters():
        if param.requires_grad:
            # Use Muon for 2D parameters that aren't embeddings or heads
            if param.ndim == 2 and "embed" not in name and "lm_head" not in name:
                muon_params.append(param)
            else:
                adamw_params.append(param)

    optimizer = Muon(
        lr=training_args.learning_rate,
        wd=training_args.weight_decay,
        muon_params=muon_params,
        adamw_params=adamw_params,
        adamw_betas=(training_args.adam_beta1, training_args.adam_beta2),
        adamw_eps=training_args.adam_epsilon,
    )
    logger.info_rank0(
        f"Using Muon optimizer with {len(muon_params)} Muon params and {len(adamw_params)} AdamW params."
    )
    return optimizer


def create_custom_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> Optional["torch.optim.Optimizer"]:
    if finetuning_args.use_galore:
        return _create_galore_optimizer(model, training_args, finetuning_args)

    if finetuning_args.use_apollo:
        return _create_apollo_optimizer(model, training_args, finetuning_args)

    if finetuning_args.loraplus_lr_ratio is not None:
        return _create_loraplus_optimizer(model, training_args, finetuning_args)

    if finetuning_args.use_badam:
        return _create_badam_optimizer(model, training_args, finetuning_args)

    if finetuning_args.use_adam_mini:
        return _create_adam_mini_optimizer(model, training_args)

    if finetuning_args.use_muon:
        return _create_muon_optimizer(model, training_args)


def create_custom_scheduler(
    training_args: "TrainingArguments",
    num_training_steps: int,
    optimizer: Optional["torch.optim.Optimizer"] = None,
) -> None:
    if training_args.lr_scheduler_type == "warmup_stable_decay":
        num_warmup_steps = training_args.get_warmup_steps(num_training_steps)
        remaining_steps = num_training_steps - num_warmup_steps
        num_stable_steps = remaining_steps // 3  # use 1/3 for stable by default
        num_decay_steps = remaining_steps - num_stable_steps
        scheduler_kwargs = training_args.lr_scheduler_kwargs or {}
        default_kwargs = {
            "num_stable_steps": num_stable_steps,
            "num_decay_steps": num_decay_steps,
        }
        for key, value in default_kwargs.items():
            if key not in scheduler_kwargs:
                scheduler_kwargs[key] = value

        training_args.lr_scheduler_kwargs = scheduler_kwargs

    if optimizer is not None and isinstance(optimizer, DummyOptimizer):
        optimizer_dict = optimizer.optimizer_dict
        scheduler_dict: dict[torch.nn.Parameter, torch.optim.lr_scheduler.LRScheduler] = {}

        for param in optimizer_dict.keys():
            scheduler_dict[param] = get_scheduler(
                training_args.lr_scheduler_type,
                optimizer=optimizer_dict[param],
                num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
                num_training_steps=num_training_steps,
                scheduler_specific_kwargs=training_args.lr_scheduler_kwargs,
            )

        def scheduler_hook(param: "torch.nn.Parameter"):
            scheduler_dict[param].step()

        for param in optimizer_dict.keys():
            param.register_post_accumulate_grad_hook(scheduler_hook)


def get_batch_logps(
    logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX
) -> tuple["torch.Tensor", "torch.Tensor"]:
    r"""Compute the log probabilities of the given labels under the given logits.

    Returns:
        logps: A tensor of shape (batch_size,) containing the sum of log probabilities.
        valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens.

    """
    if logits.shape[:-1] != labels.shape:
        raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.")

    labels = labels[:, 1:].clone()
    logits = logits[:, :-1, :]
    loss_mask = labels != label_pad_token_id
    labels[labels == label_pad_token_id] = 0  # dummy token
    per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
    return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)


def nested_detach(
    tensors: Union["torch.Tensor", list["torch.Tensor"], tuple["torch.Tensor"], dict[str, "torch.Tensor"]],
    clone: bool = False,
):
    r"""Detach `tensors` (even if it's a nested list/tuple/dict of tensors)."""
    if isinstance(tensors, (list, tuple)):
        return type(tensors)(nested_detach(t, clone=clone) for t in tensors)
    elif isinstance(tensors, Mapping):
        return type(tensors)({k: nested_detach(t, clone=clone) for k, t in tensors.items()})

    if isinstance(tensors, torch.Tensor):
        if clone:
            return tensors.detach().clone()
        else:
            return tensors.detach()
    else:
        return tensors


def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCallback":
    r"""Get the callback for logging to SwanLab."""
    import swanlab  # type: ignore
    from swanlab.integration.transformers import SwanLabCallback  # type: ignore

    if finetuning_args.swanlab_api_key is not None:
        swanlab.login(api_key=finetuning_args.swanlab_api_key)

    if finetuning_args.swanlab_lark_webhook_url is not None:
        from swanlab.plugin.notification import LarkCallback  # type: ignore

        lark_callback = LarkCallback(
            webhook_url=finetuning_args.swanlab_lark_webhook_url,
            secret=finetuning_args.swanlab_lark_secret,
        )
        swanlab.register_callbacks([lark_callback])

    class SwanLabCallbackExtension(SwanLabCallback):
        def setup(self, args: "TrainingArguments", state: "TrainerState", model: "PreTrainedModel", **kwargs):
            if not state.is_world_process_zero:
                return

            super().setup(args, state, model, **kwargs)
            try:
                if hasattr(self, "_swanlab"):
                    swanlab_public_config = self._swanlab.get_run().public.json()
                else:  # swanlab <= 0.4.9
                    swanlab_public_config = self._experiment.get_run().public.json()
            except Exception:
                swanlab_public_config = {}

            with open(os.path.join(args.output_dir, SWANLAB_CONFIG), "w") as f:
                f.write(json.dumps(swanlab_public_config, indent=2))

    swanlab_callback = SwanLabCallbackExtension(
        project=finetuning_args.swanlab_project,
        workspace=finetuning_args.swanlab_workspace,
        experiment_name=finetuning_args.swanlab_run_name,
        mode=finetuning_args.swanlab_mode,
        config={"Framework": "🦙LlamaFactory"},
        logdir=finetuning_args.swanlab_logdir,
    )
    return swanlab_callback


def get_ray_trainer(
    training_function: Callable,
    train_loop_config: dict[str, Any],
    ray_args: "RayArguments",
) -> "TorchTrainer":
    if not ray_args.use_ray:
        raise ValueError("Ray was not enabled. Please set `USE_RAY=1` to enable ray.")

    if ray_args.ray_init_kwargs is not None:
        ray.init(**ray_args.ray_init_kwargs)

    if ray_args.ray_storage_filesystem is not None:
        # this means we are using s3/gcs
        storage_path = ray_args.ray_storage_path
    else:
        storage_path = Path(ray_args.ray_storage_path).absolute().as_posix()

    trainer = TorchTrainer(
        training_function,
        train_loop_config=train_loop_config,
        scaling_config=ScalingConfig(
            num_workers=ray_args.ray_num_workers,
            resources_per_worker=ray_args.resources_per_worker,
            placement_strategy=ray_args.placement_strategy,
            use_gpu=True,
        ),
        run_config=RunConfig(
            name=ray_args.ray_run_name,
            storage_filesystem=ray_args.ray_storage_filesystem,
            storage_path=storage_path,
        ),
    )
    return trainer