# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore # and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus # and the original BAdam's implementation: https://github.com/Ledzy/BAdam # and the HuggingFace's TRL library: https://github.com/huggingface/trl # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections.abc import Mapping from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Optional, Union import torch from transformers import Trainer from transformers.integrations import is_deepspeed_zero3_enabled from transformers.modeling_utils import is_fsdp_enabled from transformers.optimization import get_scheduler from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.trainer_pt_utils import get_parameter_names from typing_extensions import override from ..extras import logging from ..extras.constants import IGNORE_INDEX, SWANLAB_CONFIG from ..extras.packages import is_apollo_available, is_galore_available, is_ray_available from ..hparams import FinetuningArguments, ModelArguments from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params if is_galore_available(): from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit # type: ignore if is_apollo_available(): from apollo_torch import APOLLOAdamW # type: ignore if is_ray_available(): import ray from ray.train import RunConfig, ScalingConfig from ray.train.torch import TorchTrainer if TYPE_CHECKING: from transformers import PreTrainedModel, TrainerCallback, TrainerState from trl import AutoModelForCausalLMWithValueHead from ..hparams import DataArguments, RayArguments, TrainingArguments logger = logging.get_logger(__name__) class DummyOptimizer(torch.optim.Optimizer): r"""A dummy optimizer used for the GaLore or APOLLO algorithm.""" def __init__( self, lr: float = 1e-3, optimizer_dict: Optional[dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None ) -> None: dummy_tensor = torch.randn(1, 1) self.optimizer_dict = optimizer_dict super().__init__([dummy_tensor], {"lr": lr}) @override def zero_grad(self, set_to_none: bool = True) -> None: pass @override def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: pass def create_modelcard_and_push( trainer: "Trainer", model_args: "ModelArguments", data_args: "DataArguments", training_args: "TrainingArguments", finetuning_args: "FinetuningArguments", ) -> None: kwargs = { "tasks": "text-generation", "finetuned_from": model_args.model_name_or_path, "tags": ["llama-factory", finetuning_args.finetuning_type], } if data_args.dataset is not None: kwargs["dataset"] = data_args.dataset if model_args.use_unsloth: kwargs["tags"] = kwargs["tags"] + ["unsloth"] if not training_args.do_train: pass elif training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(license="other", **kwargs) # prevent from connecting to hub def create_ref_model( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False ) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]: r"""Create reference model for PPO/DPO training. Evaluation mode is not supported. The valuehead parameter is randomly initialized since it is useless for PPO training. """ if finetuning_args.ref_model is not None: ref_model_args = ModelArguments.copyfrom( model_args, model_name_or_path=finetuning_args.ref_model, adapter_name_or_path=finetuning_args.ref_model_adapters, quantization_bit=finetuning_args.ref_model_quantization_bit, ) ref_finetuning_args = FinetuningArguments() tokenizer = load_tokenizer(ref_model_args)["tokenizer"] ref_model = load_model( tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead ) logger.info_rank0(f"Created reference model from {finetuning_args.ref_model}") else: if finetuning_args.finetuning_type == "lora": ref_model = None else: ref_model_args = ModelArguments.copyfrom(model_args) ref_finetuning_args = FinetuningArguments() tokenizer = load_tokenizer(ref_model_args)["tokenizer"] ref_model = load_model( tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead ) logger.info_rank0("Created reference model from the model itself.") return ref_model def create_reward_model( model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments" ) -> Optional["AutoModelForCausalLMWithValueHead"]: r"""Create reward model for PPO training.""" if finetuning_args.reward_model_type == "api": assert finetuning_args.reward_model.startswith("http"), "Please provide full url." logger.info_rank0(f"Use reward server {finetuning_args.reward_model}") return finetuning_args.reward_model elif finetuning_args.reward_model_type == "lora": model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward") for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090 if "default" in name: param.data = param.data.to(torch.float32) # trainable params should in fp32 vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args) assert vhead_params is not None, "Reward model is not correctly loaded." model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) model.register_buffer( "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False ) model.register_buffer( "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False ) logger.info_rank0(f"Loaded adapter weights of reward model from {finetuning_args.reward_model}") return None else: reward_model_args = ModelArguments.copyfrom( model_args, model_name_or_path=finetuning_args.reward_model, adapter_name_or_path=finetuning_args.reward_model_adapters, quantization_bit=finetuning_args.reward_model_quantization_bit, ) reward_finetuning_args = FinetuningArguments() tokenizer = load_tokenizer(reward_model_args)["tokenizer"] reward_model = load_model( tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True ) logger.info_rank0(f"Loaded full weights of reward model from {finetuning_args.reward_model}") logger.warning_rank0("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.") return reward_model def _get_decay_parameter_names(model: "PreTrainedModel") -> list[str]: r"""Return a list of names of parameters with weight decay. (weights in non-layernorm layers).""" decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS) decay_parameters = [name for name in decay_parameters if "bias" not in name] return decay_parameters def _create_galore_optimizer( model: "PreTrainedModel", training_args: "TrainingArguments", finetuning_args: "FinetuningArguments", ) -> "torch.optim.Optimizer": if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all": galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower) else: galore_targets = finetuning_args.galore_target galore_params: list[torch.nn.Parameter] = [] for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets): for param in module.parameters(): if param.requires_grad and len(param.shape) > 1: galore_params.append(param) galore_kwargs = { "rank": finetuning_args.galore_rank, "update_proj_gap": finetuning_args.galore_update_interval, "scale": finetuning_args.galore_scale, "proj_type": finetuning_args.galore_proj_type, } id_galore_params = {id(param) for param in galore_params} decay_params, nodecay_params = [], [] # they are non-galore parameters trainable_params: list[torch.nn.Parameter] = [] # galore_params + decay_params + nodecay_params decay_param_names = _get_decay_parameter_names(model) for name, param in model.named_parameters(): if param.requires_grad: trainable_params.append(param) if id(param) not in id_galore_params: if name in decay_param_names: decay_params.append(param) else: nodecay_params.append(param) _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) if training_args.optim == "adamw_torch": optim_class = GaLoreAdamW elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]: optim_class = GaLoreAdamW8bit elif training_args.optim == "adafactor": optim_class = GaLoreAdafactor else: raise NotImplementedError(f"Unknown optim: {training_args.optim}.") if finetuning_args.galore_layerwise: logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise GaLore.") if training_args.gradient_accumulation_steps != 1: raise ValueError("Per-layer GaLore does not support gradient accumulation.") optimizer_dict: dict[torch.Tensor, torch.optim.Optimizer] = {} for param in nodecay_params: param_groups = [dict(params=[param], weight_decay=0.0)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) for param in decay_params: param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) for param in galore_params: # galore params have weight decay param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) def optimizer_hook(param: "torch.nn.Parameter"): if param.grad is not None: optimizer_dict[param].step() optimizer_dict[param].zero_grad() for param in trainable_params: param.register_post_accumulate_grad_hook(optimizer_hook) optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict) else: param_groups = [ dict(params=nodecay_params, weight_decay=0.0), dict(params=decay_params, weight_decay=training_args.weight_decay), dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs), ] optimizer = optim_class(param_groups, **optim_kwargs) logger.info_rank0( f"Using GaLore optimizer with args: {galore_kwargs}. " "It may cause hanging at the start of training, wait patiently." ) return optimizer def _create_apollo_optimizer( model: "PreTrainedModel", training_args: "TrainingArguments", finetuning_args: "FinetuningArguments", ) -> "torch.optim.Optimizer": if len(finetuning_args.apollo_target) == 1 and finetuning_args.apollo_target[0] == "all": apollo_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower) else: apollo_targets = finetuning_args.apollo_target apollo_params: list[torch.nn.Parameter] = [] for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear) and any(target in name for target in apollo_targets): for param in module.parameters(): if param.requires_grad and len(param.shape) > 1: apollo_params.append(param) apollo_kwargs = { "rank": finetuning_args.apollo_rank, "proj": finetuning_args.apollo_proj, "proj_type": finetuning_args.apollo_proj_type, "update_proj_gap": finetuning_args.apollo_update_interval, "scale": finetuning_args.apollo_scale, "scale_type": finetuning_args.apollo_scale_type, "scale_front": finetuning_args.apollo_scale_front, } id_apollo_params = {id(param) for param in apollo_params} decay_params, nodecay_params = [], [] # they are non-apollo parameters trainable_params: list[torch.nn.Parameter] = [] # apollo_params + decay_params + nodecay_params decay_param_names = _get_decay_parameter_names(model) for name, param in model.named_parameters(): if param.requires_grad: trainable_params.append(param) if id(param) not in id_apollo_params: if name in decay_param_names: decay_params.append(param) else: nodecay_params.append(param) _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) if training_args.optim == "adamw_torch": optim_class = APOLLOAdamW else: raise NotImplementedError(f"Unknown optim: {training_args.optim}.") if finetuning_args.apollo_layerwise: logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise APOLLO.") if training_args.gradient_accumulation_steps != 1: raise ValueError("Per-layer APOLLO does not support gradient accumulation.") optimizer_dict: dict[torch.Tensor, torch.optim.Optimizer] = {} for param in nodecay_params: param_groups = [dict(params=[param], weight_decay=0.0)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) for param in decay_params: param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) for param in apollo_params: # apollo params have weight decay param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **apollo_kwargs)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) def optimizer_hook(param: "torch.nn.Parameter"): if param.grad is not None: optimizer_dict[param].step() optimizer_dict[param].zero_grad() for param in trainable_params: param.register_post_accumulate_grad_hook(optimizer_hook) optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict) else: param_groups = [ dict(params=nodecay_params, weight_decay=0.0), dict(params=decay_params, weight_decay=training_args.weight_decay), dict(params=apollo_params, weight_decay=training_args.weight_decay, **apollo_kwargs), ] optimizer = optim_class(param_groups, **optim_kwargs) logger.info_rank0(f"Using APOLLO optimizer with args: {apollo_kwargs}.") return optimizer def _create_loraplus_optimizer( model: "PreTrainedModel", training_args: "TrainingArguments", finetuning_args: "FinetuningArguments", ) -> "torch.optim.Optimizer": default_lr = training_args.learning_rate loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio embedding_lr = finetuning_args.loraplus_lr_embedding decay_param_names = _get_decay_parameter_names(model) param_dict: dict[str, list[torch.nn.Parameter]] = { "lora_a": [], "lora_b": [], "lora_b_nodecay": [], "embedding": [], } for name, param in model.named_parameters(): if param.requires_grad: if "lora_embedding_B" in name: param_dict["embedding"].append(param) elif "lora_B" in name or param.ndim == 1: if name in decay_param_names: param_dict["lora_b"].append(param) else: param_dict["lora_b_nodecay"].append(param) else: param_dict["lora_a"].append(param) optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) param_groups = [ dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay), dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay), dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0), dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay), ] optimizer = optim_class(param_groups, **optim_kwargs) logger.info_rank0(f"Using LoRA+ optimizer with loraplus lr ratio {finetuning_args.loraplus_lr_ratio:.2f}.") return optimizer def _create_badam_optimizer( model: "PreTrainedModel", training_args: "TrainingArguments", finetuning_args: "FinetuningArguments", ) -> "torch.optim.Optimizer": decay_params, nodecay_params = [], [] decay_param_names = _get_decay_parameter_names(model) for name, param in model.named_parameters(): if param.requires_grad: if name in decay_param_names: decay_params.append(param) else: nodecay_params.append(param) optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) param_groups = [ dict(params=nodecay_params, weight_decay=0.0), dict(params=decay_params, weight_decay=training_args.weight_decay), ] if finetuning_args.badam_mode == "layer": from badam import BlockOptimizer # type: ignore base_optimizer = optim_class(param_groups, **optim_kwargs) optimizer = BlockOptimizer( base_optimizer=base_optimizer, named_parameters_list=list(model.named_parameters()), block_prefix_list=None, switch_block_every=finetuning_args.badam_switch_interval, start_block=finetuning_args.badam_start_block, switch_mode=finetuning_args.badam_switch_mode, verbose=finetuning_args.badam_verbose, ds_zero3_enabled=is_deepspeed_zero3_enabled(), ) logger.info_rank0( f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, " f"switch block every {finetuning_args.badam_switch_interval} steps, " f"default start block is {finetuning_args.badam_start_block}" ) elif finetuning_args.badam_mode == "ratio": from badam import BlockOptimizerRatio # type: ignore assert finetuning_args.badam_update_ratio > 1e-6 optimizer = BlockOptimizerRatio( param_groups=param_groups, named_parameters_list=list(model.named_parameters()), update_ratio=finetuning_args.badam_update_ratio, mask_mode=finetuning_args.badam_mask_mode, verbose=finetuning_args.badam_verbose, include_embedding=False, **optim_kwargs, ) logger.info_rank0( f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, " f"mask mode is {finetuning_args.badam_mask_mode}" ) return optimizer def _create_adam_mini_optimizer( model: "PreTrainedModel", training_args: "TrainingArguments", ) -> "torch.optim.Optimizer": from adam_mini import Adam_mini # type: ignore hidden_size = getattr(model.config, "hidden_size", None) num_q_head = getattr(model.config, "num_attention_heads", None) num_kv_head = getattr(model.config, "num_key_value_heads", None) optimizer = Adam_mini( named_parameters=model.named_parameters(), lr=training_args.learning_rate, betas=(training_args.adam_beta1, training_args.adam_beta2), eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, model_sharding=is_fsdp_enabled() or is_deepspeed_zero3_enabled(), dim=hidden_size, n_heads=num_q_head, n_kv_heads=num_kv_head, ) logger.info_rank0("Using Adam-mini optimizer.") return optimizer def _create_muon_optimizer( model: "PreTrainedModel", training_args: "TrainingArguments", ) -> "torch.optim.Optimizer": from ..third_party.muon import Muon muon_params, adamw_params = [], [] for name, param in model.named_parameters(): if param.requires_grad: # Use Muon for 2D parameters that aren't embeddings or heads if param.ndim == 2 and "embed" not in name and "lm_head" not in name: muon_params.append(param) else: adamw_params.append(param) optimizer = Muon( lr=training_args.learning_rate, wd=training_args.weight_decay, muon_params=muon_params, adamw_params=adamw_params, adamw_betas=(training_args.adam_beta1, training_args.adam_beta2), adamw_eps=training_args.adam_epsilon, ) logger.info_rank0( f"Using Muon optimizer with {len(muon_params)} Muon params and {len(adamw_params)} AdamW params." ) return optimizer def create_custom_optimizer( model: "PreTrainedModel", training_args: "TrainingArguments", finetuning_args: "FinetuningArguments", ) -> Optional["torch.optim.Optimizer"]: if finetuning_args.use_galore: return _create_galore_optimizer(model, training_args, finetuning_args) if finetuning_args.use_apollo: return _create_apollo_optimizer(model, training_args, finetuning_args) if finetuning_args.loraplus_lr_ratio is not None: return _create_loraplus_optimizer(model, training_args, finetuning_args) if finetuning_args.use_badam: return _create_badam_optimizer(model, training_args, finetuning_args) if finetuning_args.use_adam_mini: return _create_adam_mini_optimizer(model, training_args) if finetuning_args.use_muon: return _create_muon_optimizer(model, training_args) def create_custom_scheduler( training_args: "TrainingArguments", num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None, ) -> None: if training_args.lr_scheduler_type == "warmup_stable_decay": num_warmup_steps = training_args.get_warmup_steps(num_training_steps) remaining_steps = num_training_steps - num_warmup_steps num_stable_steps = remaining_steps // 3 # use 1/3 for stable by default num_decay_steps = remaining_steps - num_stable_steps scheduler_kwargs = training_args.lr_scheduler_kwargs or {} default_kwargs = { "num_stable_steps": num_stable_steps, "num_decay_steps": num_decay_steps, } for key, value in default_kwargs.items(): if key not in scheduler_kwargs: scheduler_kwargs[key] = value training_args.lr_scheduler_kwargs = scheduler_kwargs if optimizer is not None and isinstance(optimizer, DummyOptimizer): optimizer_dict = optimizer.optimizer_dict scheduler_dict: dict[torch.nn.Parameter, torch.optim.lr_scheduler.LRScheduler] = {} for param in optimizer_dict.keys(): scheduler_dict[param] = get_scheduler( training_args.lr_scheduler_type, optimizer=optimizer_dict[param], num_warmup_steps=training_args.get_warmup_steps(num_training_steps), num_training_steps=num_training_steps, scheduler_specific_kwargs=training_args.lr_scheduler_kwargs, ) def scheduler_hook(param: "torch.nn.Parameter"): scheduler_dict[param].step() for param in optimizer_dict.keys(): param.register_post_accumulate_grad_hook(scheduler_hook) def get_batch_logps( logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX ) -> tuple["torch.Tensor", "torch.Tensor"]: r"""Compute the log probabilities of the given labels under the given logits. Returns: logps: A tensor of shape (batch_size,) containing the sum of log probabilities. valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens. """ if logits.shape[:-1] != labels.shape: raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.") labels = labels[:, 1:].clone() logits = logits[:, :-1, :] loss_mask = labels != label_pad_token_id labels[labels == label_pad_token_id] = 0 # dummy token per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2) return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1) def nested_detach( tensors: Union["torch.Tensor", list["torch.Tensor"], tuple["torch.Tensor"], dict[str, "torch.Tensor"]], clone: bool = False, ): r"""Detach `tensors` (even if it's a nested list/tuple/dict of tensors).""" if isinstance(tensors, (list, tuple)): return type(tensors)(nested_detach(t, clone=clone) for t in tensors) elif isinstance(tensors, Mapping): return type(tensors)({k: nested_detach(t, clone=clone) for k, t in tensors.items()}) if isinstance(tensors, torch.Tensor): if clone: return tensors.detach().clone() else: return tensors.detach() else: return tensors def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCallback": r"""Get the callback for logging to SwanLab.""" import swanlab # type: ignore from swanlab.integration.transformers import SwanLabCallback # type: ignore if finetuning_args.swanlab_api_key is not None: swanlab.login(api_key=finetuning_args.swanlab_api_key) if finetuning_args.swanlab_lark_webhook_url is not None: from swanlab.plugin.notification import LarkCallback # type: ignore lark_callback = LarkCallback( webhook_url=finetuning_args.swanlab_lark_webhook_url, secret=finetuning_args.swanlab_lark_secret, ) swanlab.register_callbacks([lark_callback]) class SwanLabCallbackExtension(SwanLabCallback): def setup(self, args: "TrainingArguments", state: "TrainerState", model: "PreTrainedModel", **kwargs): if not state.is_world_process_zero: return super().setup(args, state, model, **kwargs) try: if hasattr(self, "_swanlab"): swanlab_public_config = self._swanlab.get_run().public.json() else: # swanlab <= 0.4.9 swanlab_public_config = self._experiment.get_run().public.json() except Exception: swanlab_public_config = {} with open(os.path.join(args.output_dir, SWANLAB_CONFIG), "w") as f: f.write(json.dumps(swanlab_public_config, indent=2)) swanlab_callback = SwanLabCallbackExtension( project=finetuning_args.swanlab_project, workspace=finetuning_args.swanlab_workspace, experiment_name=finetuning_args.swanlab_run_name, mode=finetuning_args.swanlab_mode, config={"Framework": "🦙LlamaFactory"}, logdir=finetuning_args.swanlab_logdir, ) return swanlab_callback def get_ray_trainer( training_function: Callable, train_loop_config: dict[str, Any], ray_args: "RayArguments", ) -> "TorchTrainer": if not ray_args.use_ray: raise ValueError("Ray was not enabled. Please set `USE_RAY=1` to enable ray.") if ray_args.ray_init_kwargs is not None: ray.init(**ray_args.ray_init_kwargs) if ray_args.ray_storage_filesystem is not None: # this means we are using s3/gcs storage_path = ray_args.ray_storage_path else: storage_path = Path(ray_args.ray_storage_path).absolute().as_posix() trainer = TorchTrainer( training_function, train_loop_config=train_loop_config, scaling_config=ScalingConfig( num_workers=ray_args.ray_num_workers, resources_per_worker=ray_args.resources_per_worker, placement_strategy=ray_args.placement_strategy, use_gpu=True, ), run_config=RunConfig( name=ray_args.ray_run_name, storage_filesystem=ray_args.ray_storage_filesystem, storage_path=storage_path, ), ) return trainer