Spaces:
Running
Running
# Copyright 2025 LMSYS and the LlamaFactory team. | |
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# This code is inspired by the LMSYS's FastChat library. | |
# https://github.com/lm-sys/FastChat/blob/v0.2.30/fastchat/train/train.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import TYPE_CHECKING | |
from ...extras import logging | |
from ...extras.constants import RopeScaling | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig | |
from ...hparams import ModelArguments | |
logger = logging.get_logger(__name__) | |
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: | |
if model_args.rope_scaling is None: | |
return | |
if not hasattr(config, "rope_scaling"): | |
logger.warning_rank0("Current model does not support RoPE scaling.") | |
return | |
rope_kwargs = {"rope_type": getattr(model_args.rope_scaling, "value", model_args.rope_scaling)} # handle enum | |
if model_args.model_max_length is not None: | |
if is_trainable and model_args.rope_scaling == RopeScaling.DYNAMIC: | |
logger.warning_rank0( | |
"Dynamic NTK scaling may not work well with fine-tuning. " | |
"See: https://github.com/huggingface/transformers/pull/24653" | |
) | |
current_max_length = getattr(config, "max_position_embeddings", None) | |
if (not current_max_length) or model_args.model_max_length <= current_max_length: | |
logger.warning_rank0("Input length is smaller than max length. Disabling rope scaling.") | |
return | |
logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.") | |
setattr(config, "max_position_embeddings", model_args.model_max_length) | |
rope_kwargs["factor"] = float(math.ceil(model_args.model_max_length / current_max_length)) | |
if model_args.rope_scaling == RopeScaling.DYNAMIC: | |
rope_kwargs["original_max_position_embeddings"] = current_max_length | |
elif model_args.rope_scaling == RopeScaling.LLAMA3: | |
rope_kwargs["original_max_position_embeddings"] = current_max_length | |
rope_kwargs["low_freq_factor"] = 1.0 | |
rope_kwargs["high_freq_factor"] = 4.0 | |
else: | |
rope_kwargs["factor"] = 2.0 | |
setattr(config, "rope_scaling", rope_kwargs) | |
logger.info_rank0( | |
f"Using {rope_kwargs['rope_type']} scaling strategy and setting scaling factor to {rope_kwargs['factor']}." | |
) | |