Spaces:
Sleeping
Sleeping
File size: 3,031 Bytes
e81015c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# Copyright 2025 LMSYS and the LlamaFactory team.
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# This code is inspired by the LMSYS's FastChat library.
# https://github.com/lm-sys/FastChat/blob/v0.2.30/fastchat/train/train.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import TYPE_CHECKING
from ...extras import logging
from ...extras.constants import RopeScaling
if TYPE_CHECKING:
from transformers import PretrainedConfig
from ...hparams import ModelArguments
logger = logging.get_logger(__name__)
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if model_args.rope_scaling is None:
return
if not hasattr(config, "rope_scaling"):
logger.warning_rank0("Current model does not support RoPE scaling.")
return
rope_kwargs = {"rope_type": getattr(model_args.rope_scaling, "value", model_args.rope_scaling)} # handle enum
if model_args.model_max_length is not None:
if is_trainable and model_args.rope_scaling == RopeScaling.DYNAMIC:
logger.warning_rank0(
"Dynamic NTK scaling may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if (not current_max_length) or model_args.model_max_length <= current_max_length:
logger.warning_rank0("Input length is smaller than max length. Disabling rope scaling.")
return
logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.")
setattr(config, "max_position_embeddings", model_args.model_max_length)
rope_kwargs["factor"] = float(math.ceil(model_args.model_max_length / current_max_length))
if model_args.rope_scaling == RopeScaling.DYNAMIC:
rope_kwargs["original_max_position_embeddings"] = current_max_length
elif model_args.rope_scaling == RopeScaling.LLAMA3:
rope_kwargs["original_max_position_embeddings"] = current_max_length
rope_kwargs["low_freq_factor"] = 1.0
rope_kwargs["high_freq_factor"] = 4.0
else:
rope_kwargs["factor"] = 2.0
setattr(config, "rope_scaling", rope_kwargs)
logger.info_rank0(
f"Using {rope_kwargs['rope_type']} scaling strategy and setting scaling factor to {rope_kwargs['factor']}."
)
|