# Copyright 2025 LMSYS and the LlamaFactory team. # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # This code is inspired by the LMSYS's FastChat library. # https://github.com/lm-sys/FastChat/blob/v0.2.30/fastchat/train/train.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import TYPE_CHECKING from ...extras import logging from ...extras.constants import RopeScaling if TYPE_CHECKING: from transformers import PretrainedConfig from ...hparams import ModelArguments logger = logging.get_logger(__name__) def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: if model_args.rope_scaling is None: return if not hasattr(config, "rope_scaling"): logger.warning_rank0("Current model does not support RoPE scaling.") return rope_kwargs = {"rope_type": getattr(model_args.rope_scaling, "value", model_args.rope_scaling)} # handle enum if model_args.model_max_length is not None: if is_trainable and model_args.rope_scaling == RopeScaling.DYNAMIC: logger.warning_rank0( "Dynamic NTK scaling may not work well with fine-tuning. " "See: https://github.com/huggingface/transformers/pull/24653" ) current_max_length = getattr(config, "max_position_embeddings", None) if (not current_max_length) or model_args.model_max_length <= current_max_length: logger.warning_rank0("Input length is smaller than max length. Disabling rope scaling.") return logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.") setattr(config, "max_position_embeddings", model_args.model_max_length) rope_kwargs["factor"] = float(math.ceil(model_args.model_max_length / current_max_length)) if model_args.rope_scaling == RopeScaling.DYNAMIC: rope_kwargs["original_max_position_embeddings"] = current_max_length elif model_args.rope_scaling == RopeScaling.LLAMA3: rope_kwargs["original_max_position_embeddings"] = current_max_length rope_kwargs["low_freq_factor"] = 1.0 rope_kwargs["high_freq_factor"] = 4.0 else: rope_kwargs["factor"] = 2.0 setattr(config, "rope_scaling", rope_kwargs) logger.info_rank0( f"Using {rope_kwargs['rope_type']} scaling strategy and setting scaling factor to {rope_kwargs['factor']}." )