Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from collections import defaultdict | |
from typing import TYPE_CHECKING, Any, Optional | |
from ...extras import logging | |
from ...extras.constants import IGNORE_INDEX | |
from .processor_utils import DatasetProcessor, infer_seqlen | |
if TYPE_CHECKING: | |
from ..mm_plugin import AudioInput, ImageInput, VideoInput | |
logger = logging.get_logger(__name__) | |
class FeedbackDatasetProcessor(DatasetProcessor): | |
def _encode_data_example( | |
self, | |
prompt: list[dict[str, str]], | |
response: list[dict[str, str]], | |
kl_response: list[dict[str, str]], | |
system: Optional[str], | |
tools: Optional[str], | |
images: list["ImageInput"], | |
videos: list["VideoInput"], | |
audios: list["AudioInput"], | |
) -> tuple[list[int], list[int], list[int], list[int], bool]: | |
if response[0]["content"]: # desired example | |
kto_tag = True | |
messages = prompt + [response[0]] | |
else: # undesired example | |
kto_tag = False | |
messages = prompt + [response[1]] | |
if kl_response[0]["content"]: | |
kl_messages = prompt + [kl_response[0]] | |
else: | |
kl_messages = prompt + [kl_response[1]] | |
messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor) | |
kl_messages = self.template.mm_plugin.process_messages(kl_messages, images, videos, audios, self.processor) | |
prompt_ids, response_ids = self.template.encode_oneturn(self.tokenizer, messages, system, tools) | |
kl_prompt_ids, kl_response_ids = self.template.encode_oneturn(self.tokenizer, kl_messages, system, tools) | |
if self.template.efficient_eos: | |
response_ids += [self.tokenizer.eos_token_id] | |
kl_response_ids += [self.tokenizer.eos_token_id] | |
prompt_ids, _ = self.template.mm_plugin.process_token_ids( | |
prompt_ids, None, images, videos, audios, self.tokenizer, self.processor | |
) | |
kl_prompt_ids, _ = self.template.mm_plugin.process_token_ids( | |
kl_prompt_ids, None, images, videos, audios, self.tokenizer, self.processor | |
) | |
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), self.data_args.cutoff_len) | |
prompt_ids = prompt_ids[:source_len] | |
response_ids = response_ids[:target_len] | |
kl_source_len, kl_target_len = infer_seqlen( | |
len(kl_prompt_ids), len(kl_response_ids), self.data_args.cutoff_len | |
) | |
kl_prompt_ids = kl_prompt_ids[:kl_source_len] | |
kl_response_ids = kl_response_ids[:kl_target_len] | |
input_ids = prompt_ids + response_ids | |
labels = [IGNORE_INDEX] * source_len + response_ids | |
kl_input_ids = kl_prompt_ids + kl_response_ids | |
kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids | |
return input_ids, labels, kl_input_ids, kl_labels, kto_tag | |
def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]: | |
# Creates mismatched pairs of prompts and completions for the KL dataset by adding a +1 offset to the order of completions. | |
kl_response = [examples["_response"][-1]] + examples["_response"][:-1] | |
model_inputs = defaultdict(list) | |
for i in range(len(examples["_prompt"])): | |
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2: | |
logger.warning_rank0( | |
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]) | |
) | |
continue | |
input_ids, labels, kl_input_ids, kl_labels, kto_tag = self._encode_data_example( | |
prompt=examples["_prompt"][i], | |
response=examples["_response"][i], | |
kl_response=kl_response[i], | |
system=examples["_system"][i], | |
tools=examples["_tools"][i], | |
images=examples["_images"][i] or [], | |
videos=examples["_videos"][i] or [], | |
audios=examples["_audios"][i] or [], | |
) | |
model_inputs["input_ids"].append(input_ids) | |
model_inputs["attention_mask"].append([1] * len(input_ids)) | |
model_inputs["labels"].append(labels) | |
model_inputs["kl_input_ids"].append(kl_input_ids) | |
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids)) | |
model_inputs["kl_labels"].append(kl_labels) | |
model_inputs["kto_tags"].append(kto_tag) | |
model_inputs["images"].append(examples["_images"][i]) | |
model_inputs["videos"].append(examples["_videos"][i]) | |
model_inputs["audios"].append(examples["_audios"][i]) | |
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag]) | |
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num | |
if desirable_num == 0 or undesirable_num == 0: | |
logger.warning_rank0("Your dataset only has one preference type.") | |
return model_inputs | |
def print_data_example(self, example: dict[str, list[int]]) -> None: | |
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) | |
print("input_ids:\n{}".format(example["input_ids"])) | |
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False))) | |
print("label_ids:\n{}".format(example["labels"])) | |
print(f"labels:\n{self.tokenizer.decode(valid_labels, skip_special_tokens=False)}") | |