File size: 6,056 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
from typing import TYPE_CHECKING, Any, Optional

from ...extras import logging
from ...extras.constants import IGNORE_INDEX
from .processor_utils import DatasetProcessor, infer_seqlen


if TYPE_CHECKING:
    from ..mm_plugin import AudioInput, ImageInput, VideoInput


logger = logging.get_logger(__name__)


class FeedbackDatasetProcessor(DatasetProcessor):
    def _encode_data_example(
        self,
        prompt: list[dict[str, str]],
        response: list[dict[str, str]],
        kl_response: list[dict[str, str]],
        system: Optional[str],
        tools: Optional[str],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
    ) -> tuple[list[int], list[int], list[int], list[int], bool]:
        if response[0]["content"]:  # desired example
            kto_tag = True
            messages = prompt + [response[0]]
        else:  # undesired example
            kto_tag = False
            messages = prompt + [response[1]]

        if kl_response[0]["content"]:
            kl_messages = prompt + [kl_response[0]]
        else:
            kl_messages = prompt + [kl_response[1]]

        messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor)
        kl_messages = self.template.mm_plugin.process_messages(kl_messages, images, videos, audios, self.processor)
        prompt_ids, response_ids = self.template.encode_oneturn(self.tokenizer, messages, system, tools)
        kl_prompt_ids, kl_response_ids = self.template.encode_oneturn(self.tokenizer, kl_messages, system, tools)

        if self.template.efficient_eos:
            response_ids += [self.tokenizer.eos_token_id]
            kl_response_ids += [self.tokenizer.eos_token_id]

        prompt_ids, _ = self.template.mm_plugin.process_token_ids(
            prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
        )
        kl_prompt_ids, _ = self.template.mm_plugin.process_token_ids(
            kl_prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
        )

        source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), self.data_args.cutoff_len)
        prompt_ids = prompt_ids[:source_len]
        response_ids = response_ids[:target_len]
        kl_source_len, kl_target_len = infer_seqlen(
            len(kl_prompt_ids), len(kl_response_ids), self.data_args.cutoff_len
        )
        kl_prompt_ids = kl_prompt_ids[:kl_source_len]
        kl_response_ids = kl_response_ids[:kl_target_len]

        input_ids = prompt_ids + response_ids
        labels = [IGNORE_INDEX] * source_len + response_ids
        kl_input_ids = kl_prompt_ids + kl_response_ids
        kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids
        return input_ids, labels, kl_input_ids, kl_labels, kto_tag

    def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]:
        # Creates mismatched pairs of prompts and completions for the KL dataset by adding a +1 offset to the order of completions.
        kl_response = [examples["_response"][-1]] + examples["_response"][:-1]
        model_inputs = defaultdict(list)
        for i in range(len(examples["_prompt"])):
            if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
                logger.warning_rank0(
                    "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
                )
                continue

            input_ids, labels, kl_input_ids, kl_labels, kto_tag = self._encode_data_example(
                prompt=examples["_prompt"][i],
                response=examples["_response"][i],
                kl_response=kl_response[i],
                system=examples["_system"][i],
                tools=examples["_tools"][i],
                images=examples["_images"][i] or [],
                videos=examples["_videos"][i] or [],
                audios=examples["_audios"][i] or [],
            )
            model_inputs["input_ids"].append(input_ids)
            model_inputs["attention_mask"].append([1] * len(input_ids))
            model_inputs["labels"].append(labels)
            model_inputs["kl_input_ids"].append(kl_input_ids)
            model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
            model_inputs["kl_labels"].append(kl_labels)
            model_inputs["kto_tags"].append(kto_tag)
            model_inputs["images"].append(examples["_images"][i])
            model_inputs["videos"].append(examples["_videos"][i])
            model_inputs["audios"].append(examples["_audios"][i])

        desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
        undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
        if desirable_num == 0 or undesirable_num == 0:
            logger.warning_rank0("Your dataset only has one preference type.")

        return model_inputs

    def print_data_example(self, example: dict[str, list[int]]) -> None:
        valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
        print("input_ids:\n{}".format(example["input_ids"]))
        print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
        print("label_ids:\n{}".format(example["labels"]))
        print(f"labels:\n{self.tokenizer.decode(valid_labels, skip_special_tokens=False)}")