# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import TYPE_CHECKING, Any, Optional from ...extras import logging from ...extras.constants import IGNORE_INDEX from .processor_utils import DatasetProcessor, infer_seqlen if TYPE_CHECKING: from ..mm_plugin import AudioInput, ImageInput, VideoInput logger = logging.get_logger(__name__) class FeedbackDatasetProcessor(DatasetProcessor): def _encode_data_example( self, prompt: list[dict[str, str]], response: list[dict[str, str]], kl_response: list[dict[str, str]], system: Optional[str], tools: Optional[str], images: list["ImageInput"], videos: list["VideoInput"], audios: list["AudioInput"], ) -> tuple[list[int], list[int], list[int], list[int], bool]: if response[0]["content"]: # desired example kto_tag = True messages = prompt + [response[0]] else: # undesired example kto_tag = False messages = prompt + [response[1]] if kl_response[0]["content"]: kl_messages = prompt + [kl_response[0]] else: kl_messages = prompt + [kl_response[1]] messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor) kl_messages = self.template.mm_plugin.process_messages(kl_messages, images, videos, audios, self.processor) prompt_ids, response_ids = self.template.encode_oneturn(self.tokenizer, messages, system, tools) kl_prompt_ids, kl_response_ids = self.template.encode_oneturn(self.tokenizer, kl_messages, system, tools) if self.template.efficient_eos: response_ids += [self.tokenizer.eos_token_id] kl_response_ids += [self.tokenizer.eos_token_id] prompt_ids, _ = self.template.mm_plugin.process_token_ids( prompt_ids, None, images, videos, audios, self.tokenizer, self.processor ) kl_prompt_ids, _ = self.template.mm_plugin.process_token_ids( kl_prompt_ids, None, images, videos, audios, self.tokenizer, self.processor ) source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), self.data_args.cutoff_len) prompt_ids = prompt_ids[:source_len] response_ids = response_ids[:target_len] kl_source_len, kl_target_len = infer_seqlen( len(kl_prompt_ids), len(kl_response_ids), self.data_args.cutoff_len ) kl_prompt_ids = kl_prompt_ids[:kl_source_len] kl_response_ids = kl_response_ids[:kl_target_len] input_ids = prompt_ids + response_ids labels = [IGNORE_INDEX] * source_len + response_ids kl_input_ids = kl_prompt_ids + kl_response_ids kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids return input_ids, labels, kl_input_ids, kl_labels, kto_tag def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]: # Creates mismatched pairs of prompts and completions for the KL dataset by adding a +1 offset to the order of completions. kl_response = [examples["_response"][-1]] + examples["_response"][:-1] model_inputs = defaultdict(list) for i in range(len(examples["_prompt"])): if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2: logger.warning_rank0( "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]) ) continue input_ids, labels, kl_input_ids, kl_labels, kto_tag = self._encode_data_example( prompt=examples["_prompt"][i], response=examples["_response"][i], kl_response=kl_response[i], system=examples["_system"][i], tools=examples["_tools"][i], images=examples["_images"][i] or [], videos=examples["_videos"][i] or [], audios=examples["_audios"][i] or [], ) model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) model_inputs["kl_input_ids"].append(kl_input_ids) model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids)) model_inputs["kl_labels"].append(kl_labels) model_inputs["kto_tags"].append(kto_tag) model_inputs["images"].append(examples["_images"][i]) model_inputs["videos"].append(examples["_videos"][i]) model_inputs["audios"].append(examples["_audios"][i]) desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag]) undesirable_num = len(model_inputs["kto_tags"]) - desirable_num if desirable_num == 0 or undesirable_num == 0: logger.warning_rank0("Your dataset only has one preference type.") return model_inputs def print_data_example(self, example: dict[str, list[int]]) -> None: valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False))) print("label_ids:\n{}".format(example["labels"])) print(f"labels:\n{self.tokenizer.decode(valid_labels, skip_special_tokens=False)}")