PromptNet / modules /encoder_decoder.py
fenglinliu's picture
Upload 55 files
6e32a75 verified
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .att_model import pack_wrapper, AttModel
def clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
def attention(query, key, value, mask=None, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def subsequent_mask(size):
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
class Transformer(nn.Module):
def __init__(self, encoder, decoder, src_embed, tgt_embed, rm):
super(Transformer, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.rm = rm
def forward(self, src, tgt, src_mask, tgt_mask):
return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, hidden_states, src_mask, tgt, tgt_mask):
memory = self.rm.init_memory(hidden_states.size(0)).to(hidden_states)
memory = self.rm(self.tgt_embed(tgt), memory)
return self.decoder(self.tgt_embed(tgt), hidden_states, src_mask, tgt_mask, memory)
class Encoder(nn.Module):
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.d_model)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class EncoderLayer(nn.Module):
def __init__(self, d_model, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(d_model, dropout), 2)
self.d_model = d_model
def forward(self, x, mask):
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
class SublayerConnection(nn.Module):
def __init__(self, d_model, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(features))
self.beta = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
class Decoder(nn.Module):
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.d_model)
def forward(self, x, hidden_states, src_mask, tgt_mask, memory):
for layer in self.layers:
x = layer(x, hidden_states, src_mask, tgt_mask, memory)
return self.norm(x)
class DecoderLayer(nn.Module):
def __init__(self, d_model, self_attn, src_attn, feed_forward, dropout, rm_num_slots, rm_d_model):
super(DecoderLayer, self).__init__()
self.d_model = d_model
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(ConditionalSublayerConnection(d_model, dropout, rm_num_slots, rm_d_model), 3)
def forward(self, x, hidden_states, src_mask, tgt_mask, memory):
m = hidden_states
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask), memory)
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask), memory)
return self.sublayer[2](x, self.feed_forward, memory)
class ConditionalSublayerConnection(nn.Module):
def __init__(self, d_model, dropout, rm_num_slots, rm_d_model):
super(ConditionalSublayerConnection, self).__init__()
self.norm = ConditionalLayerNorm(d_model, rm_num_slots, rm_d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer, memory):
return x + self.dropout(sublayer(self.norm(x, memory)))
class ConditionalLayerNorm(nn.Module):
def __init__(self, d_model, rm_num_slots, rm_d_model, eps=1e-6):
super(ConditionalLayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.rm_d_model = rm_d_model
self.rm_num_slots = rm_num_slots
self.eps = eps
self.mlp_gamma = nn.Sequential(nn.Linear(rm_num_slots * rm_d_model, d_model),
nn.ReLU(inplace=True),
nn.Linear(rm_d_model, rm_d_model))
self.mlp_beta = nn.Sequential(nn.Linear(rm_num_slots * rm_d_model, d_model),
nn.ReLU(inplace=True),
nn.Linear(d_model, d_model))
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0.1)
def forward(self, x, memory):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
delta_gamma = self.mlp_gamma(memory)
delta_beta = self.mlp_beta(memory)
gamma_hat = self.gamma.clone()
beta_hat = self.beta.clone()
gamma_hat = torch.stack([gamma_hat] * x.size(0), dim=0)
gamma_hat = torch.stack([gamma_hat] * x.size(1), dim=1)
beta_hat = torch.stack([beta_hat] * x.size(0), dim=0)
beta_hat = torch.stack([beta_hat] * x.size(1), dim=1)
gamma_hat += delta_gamma
beta_hat += delta_beta
return gamma_hat * (x - mean) / (std + self.eps) + beta_hat
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = query.size(0)
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class RelationalMemory(nn.Module):
def __init__(self, num_slots, d_model, num_heads=1):
super(RelationalMemory, self).__init__()
self.num_slots = num_slots
self.num_heads = num_heads
self.d_model = d_model
self.attn = MultiHeadedAttention(num_heads, d_model)
self.mlp = nn.Sequential(nn.Linear(self.d_model, self.d_model),
nn.ReLU(),
nn.Linear(self.d_model, self.d_model),
nn.ReLU())
self.W = nn.Linear(self.d_model, self.d_model * 2)
self.U = nn.Linear(self.d_model, self.d_model * 2)
def init_memory(self, batch_size):
memory = torch.stack([torch.eye(self.num_slots)] * batch_size)
if self.d_model > self.num_slots:
diff = self.d_model - self.num_slots
pad = torch.zeros((batch_size, self.num_slots, diff))
memory = torch.cat([memory, pad], -1)
elif self.d_model < self.num_slots:
memory = memory[:, :, :self.d_model]
return memory
def forward_step(self, input, memory):
# print('inputinputinputinputinput',input.size())
# print('memorymemorymemorymemorymemorymemory',memory.size())
memory = memory.reshape(-1, self.num_slots, self.d_model)
# if input.shape[0]!=memory.shape[0]:
# input=input.repeat(round(memory.shape[0]/input.shape[0]),1)
q = memory
k = torch.cat([memory, input.unsqueeze(1)], 1)
v = torch.cat([memory, input.unsqueeze(1)], 1)
next_memory = memory + self.attn(q, k, v)
next_memory = next_memory + self.mlp(next_memory)
gates = self.W(input.unsqueeze(1)) + self.U(torch.tanh(memory))
gates = torch.split(gates, split_size_or_sections=self.d_model, dim=2)
input_gate, forget_gate = gates
input_gate = torch.sigmoid(input_gate)
forget_gate = torch.sigmoid(forget_gate)
next_memory = input_gate * torch.tanh(next_memory) + forget_gate * memory
next_memory = next_memory.reshape(-1, self.num_slots * self.d_model)
return next_memory
def forward(self, inputs, memory):
outputs = []
for i in range(inputs.shape[1]):
memory = self.forward_step(inputs[:, i], memory)
outputs.append(memory)
outputs = torch.stack(outputs, dim=1)
return outputs
class EncoderDecoder(AttModel):
def make_model(self, tgt_vocab):
c = copy.deepcopy
attn = MultiHeadedAttention(self.num_heads, self.d_model)
ff = PositionwiseFeedForward(self.d_model, self.d_ff, self.dropout)
position = PositionalEncoding(self.d_model, self.dropout)
rm = RelationalMemory(num_slots=self.rm_num_slots, d_model=self.rm_d_model, num_heads=self.rm_num_heads)
model = Transformer(
Encoder(EncoderLayer(self.d_model, c(attn), c(ff), self.dropout), self.num_layers),
Decoder(
DecoderLayer(self.d_model, c(attn), c(attn), c(ff), self.dropout, self.rm_num_slots, self.rm_d_model),
self.num_layers),
lambda x: x,
nn.Sequential(Embeddings(self.d_model, tgt_vocab), c(position)),
rm)
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
def __init__(self, args, tokenizer):
super(EncoderDecoder, self).__init__(args, tokenizer)
self.args = args
self.num_layers = args.num_layers
self.d_model = args.d_model
self.d_ff = args.d_ff
self.num_heads = args.num_heads
self.dropout = args.dropout
self.rm_num_slots = args.rm_num_slots
self.rm_num_heads = args.rm_num_heads
self.rm_d_model = args.rm_d_model
tgt_vocab = self.vocab_size + 1
self.model = self.make_model(tgt_vocab)
self.logit = nn.Linear(args.d_model, tgt_vocab)
def init_hidden(self, bsz):
return []
def _prepare_feature(self, fc_feats, att_feats, att_masks):
att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks)
memory = self.model.encode(att_feats, att_masks)
return fc_feats[..., :1], att_feats[..., :1], memory, att_masks
def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
if att_masks is None:
att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long)
att_masks = att_masks.unsqueeze(-2)
if seq is not None:
# crop the last one
seq = seq[:, :-1]
seq_mask = (seq.data > 0)
seq_mask[:, 0] += True
seq_mask = seq_mask.unsqueeze(-2)
seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask)
else:
seq_mask = None
return att_feats, seq, att_masks, seq_mask
def _forward(self, fc_feats, att_feats, seq, att_masks=None):
att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq)
out = self.model(att_feats, seq, att_masks, seq_mask)
outputs = F.log_softmax(self.logit(out), dim=-1)
return outputs
def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask):
if len(state) == 0:
ys = it.unsqueeze(1)
else:
ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1)
out = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device))
return out[:, -1], [ys.unsqueeze(0)]