File size: 14,453 Bytes
6e32a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import math

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from .att_model import pack_wrapper, AttModel


def clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])


def attention(query, key, value, mask=None, dropout=None):
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim=-1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn


def subsequent_mask(size):
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0


class Transformer(nn.Module):
    def __init__(self, encoder, decoder, src_embed, tgt_embed, rm):
        super(Transformer, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.rm = rm

    def forward(self, src, tgt, src_mask, tgt_mask):
        return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)

    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)

    def decode(self, hidden_states, src_mask, tgt, tgt_mask):
        memory = self.rm.init_memory(hidden_states.size(0)).to(hidden_states)
        memory = self.rm(self.tgt_embed(tgt), memory)
        return self.decoder(self.tgt_embed(tgt), hidden_states, src_mask, tgt_mask, memory)


class Encoder(nn.Module):
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.d_model)

    def forward(self, x, mask):
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)


class EncoderLayer(nn.Module):
    def __init__(self, d_model, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(d_model, dropout), 2)
        self.d_model = d_model

    def forward(self, x, mask):
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)


class SublayerConnection(nn.Module):
    def __init__(self, d_model, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        return x + self.dropout(sublayer(self.norm(x)))


class LayerNorm(nn.Module):
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(features))
        self.beta = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.gamma * (x - mean) / (std + self.eps) + self.beta


class Decoder(nn.Module):
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.d_model)

    def forward(self, x, hidden_states, src_mask, tgt_mask, memory):
        for layer in self.layers:
            x = layer(x, hidden_states, src_mask, tgt_mask, memory)
        return self.norm(x)


class DecoderLayer(nn.Module):
    def __init__(self, d_model, self_attn, src_attn, feed_forward, dropout, rm_num_slots, rm_d_model):
        super(DecoderLayer, self).__init__()
        self.d_model = d_model
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(ConditionalSublayerConnection(d_model, dropout, rm_num_slots, rm_d_model), 3)

    def forward(self, x, hidden_states, src_mask, tgt_mask, memory):
        m = hidden_states
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask), memory)
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask), memory)
        return self.sublayer[2](x, self.feed_forward, memory)


class ConditionalSublayerConnection(nn.Module):
    def __init__(self, d_model, dropout, rm_num_slots, rm_d_model):
        super(ConditionalSublayerConnection, self).__init__()
        self.norm = ConditionalLayerNorm(d_model, rm_num_slots, rm_d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer, memory):
        return x + self.dropout(sublayer(self.norm(x, memory)))


class ConditionalLayerNorm(nn.Module):
    def __init__(self, d_model, rm_num_slots, rm_d_model, eps=1e-6):
        super(ConditionalLayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(d_model))
        self.beta = nn.Parameter(torch.zeros(d_model))
        self.rm_d_model = rm_d_model
        self.rm_num_slots = rm_num_slots
        self.eps = eps

        self.mlp_gamma = nn.Sequential(nn.Linear(rm_num_slots * rm_d_model, d_model),
                                       nn.ReLU(inplace=True),
                                       nn.Linear(rm_d_model, rm_d_model))

        self.mlp_beta = nn.Sequential(nn.Linear(rm_num_slots * rm_d_model, d_model),
                                      nn.ReLU(inplace=True),
                                      nn.Linear(d_model, d_model))

        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                nn.init.constant_(m.bias, 0.1)

    def forward(self, x, memory):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        delta_gamma = self.mlp_gamma(memory)
        delta_beta = self.mlp_beta(memory)
        gamma_hat = self.gamma.clone()
        beta_hat = self.beta.clone()
        gamma_hat = torch.stack([gamma_hat] * x.size(0), dim=0)
        gamma_hat = torch.stack([gamma_hat] * x.size(1), dim=1)
        beta_hat = torch.stack([beta_hat] * x.size(0), dim=0)
        beta_hat = torch.stack([beta_hat] * x.size(1), dim=1)
        gamma_hat += delta_gamma
        beta_hat += delta_beta
        return gamma_hat * (x - mean) / (std + self.eps) + beta_hat


class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        if mask is not None:
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]

        x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)

        x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)


class PositionwiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))


class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1).float()
        div_term = torch.exp(torch.arange(0, d_model, 2).float() *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)]
        return self.dropout(x)


class RelationalMemory(nn.Module):

    def __init__(self, num_slots, d_model, num_heads=1):
        super(RelationalMemory, self).__init__()
        self.num_slots = num_slots
        self.num_heads = num_heads
        self.d_model = d_model

        self.attn = MultiHeadedAttention(num_heads, d_model)
        self.mlp = nn.Sequential(nn.Linear(self.d_model, self.d_model),
                                 nn.ReLU(),
                                 nn.Linear(self.d_model, self.d_model),
                                 nn.ReLU())

        self.W = nn.Linear(self.d_model, self.d_model * 2)
        self.U = nn.Linear(self.d_model, self.d_model * 2)

    def init_memory(self, batch_size):
        memory = torch.stack([torch.eye(self.num_slots)] * batch_size)
        if self.d_model > self.num_slots:
            diff = self.d_model - self.num_slots
            pad = torch.zeros((batch_size, self.num_slots, diff))
            memory = torch.cat([memory, pad], -1)
        elif self.d_model < self.num_slots:
            memory = memory[:, :, :self.d_model]

        return memory

    def forward_step(self, input, memory):
#        print('inputinputinputinputinput',input.size())
#        print('memorymemorymemorymemorymemorymemory',memory.size())
        
        memory = memory.reshape(-1, self.num_slots, self.d_model)
#        if input.shape[0]!=memory.shape[0]:
#            input=input.repeat(round(memory.shape[0]/input.shape[0]),1)
        q = memory
        k = torch.cat([memory, input.unsqueeze(1)], 1)
        v = torch.cat([memory, input.unsqueeze(1)], 1)
        next_memory = memory + self.attn(q, k, v)
        next_memory = next_memory + self.mlp(next_memory)

        gates = self.W(input.unsqueeze(1)) + self.U(torch.tanh(memory))
        gates = torch.split(gates, split_size_or_sections=self.d_model, dim=2)
        input_gate, forget_gate = gates
        input_gate = torch.sigmoid(input_gate)
        forget_gate = torch.sigmoid(forget_gate)

        next_memory = input_gate * torch.tanh(next_memory) + forget_gate * memory
        next_memory = next_memory.reshape(-1, self.num_slots * self.d_model)

        return next_memory

    def forward(self, inputs, memory):
        outputs = []
        for i in range(inputs.shape[1]):
            memory = self.forward_step(inputs[:, i], memory)
            outputs.append(memory)
        outputs = torch.stack(outputs, dim=1)

        return outputs


class EncoderDecoder(AttModel):

    def make_model(self, tgt_vocab):
        c = copy.deepcopy
        attn = MultiHeadedAttention(self.num_heads, self.d_model)
        ff = PositionwiseFeedForward(self.d_model, self.d_ff, self.dropout)
        position = PositionalEncoding(self.d_model, self.dropout)
        rm = RelationalMemory(num_slots=self.rm_num_slots, d_model=self.rm_d_model, num_heads=self.rm_num_heads)
        model = Transformer(
            Encoder(EncoderLayer(self.d_model, c(attn), c(ff), self.dropout), self.num_layers),
            Decoder(
                DecoderLayer(self.d_model, c(attn), c(attn), c(ff), self.dropout, self.rm_num_slots, self.rm_d_model),
                self.num_layers),
            lambda x: x,
            nn.Sequential(Embeddings(self.d_model, tgt_vocab), c(position)),
            rm)
        for p in model.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        return model

    def __init__(self, args, tokenizer):
        super(EncoderDecoder, self).__init__(args, tokenizer)
        self.args = args
        self.num_layers = args.num_layers
        self.d_model = args.d_model
        self.d_ff = args.d_ff
        self.num_heads = args.num_heads
        self.dropout = args.dropout
        self.rm_num_slots = args.rm_num_slots
        self.rm_num_heads = args.rm_num_heads
        self.rm_d_model = args.rm_d_model

        tgt_vocab = self.vocab_size + 1

        self.model = self.make_model(tgt_vocab)
        self.logit = nn.Linear(args.d_model, tgt_vocab)

    def init_hidden(self, bsz):
        return []

    def _prepare_feature(self, fc_feats, att_feats, att_masks):

        att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks)
        memory = self.model.encode(att_feats, att_masks)

        return fc_feats[..., :1], att_feats[..., :1], memory, att_masks

    def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None):
        att_feats, att_masks = self.clip_att(att_feats, att_masks)
        att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)

        if att_masks is None:
            att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long)
        att_masks = att_masks.unsqueeze(-2)

        if seq is not None:
            # crop the last one
            seq = seq[:, :-1]
            seq_mask = (seq.data > 0)
            seq_mask[:, 0] += True

            seq_mask = seq_mask.unsqueeze(-2)
            seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask)
        else:
            seq_mask = None

        return att_feats, seq, att_masks, seq_mask

    def _forward(self, fc_feats, att_feats, seq, att_masks=None):

        att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq)
        out = self.model(att_feats, seq, att_masks, seq_mask)
        outputs = F.log_softmax(self.logit(out), dim=-1)
        return outputs

    def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask):

        if len(state) == 0:
            ys = it.unsqueeze(1)
        else:
            ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1)
        out = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device))
        return out[:, -1], [ys.unsqueeze(0)]