from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .att_model import pack_wrapper, AttModel def clones(module, N): return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) def attention(query, key, value, mask=None, dropout=None): d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn def subsequent_mask(size): attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 class Transformer(nn.Module): def __init__(self, encoder, decoder, src_embed, tgt_embed, rm): super(Transformer, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.rm = rm def forward(self, src, tgt, src_mask, tgt_mask): return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask) def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, hidden_states, src_mask, tgt, tgt_mask): memory = self.rm.init_memory(hidden_states.size(0)).to(hidden_states) memory = self.rm(self.tgt_embed(tgt), memory) return self.decoder(self.tgt_embed(tgt), hidden_states, src_mask, tgt_mask, memory) class Encoder(nn.Module): def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.d_model) def forward(self, x, mask): for layer in self.layers: x = layer(x, mask) return self.norm(x) class EncoderLayer(nn.Module): def __init__(self, d_model, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(d_model, dropout), 2) self.d_model = d_model def forward(self, x, mask): x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class SublayerConnection(nn.Module): def __init__(self, d_model, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): return x + self.dropout(sublayer(self.norm(x))) class LayerNorm(nn.Module): def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.gamma = nn.Parameter(torch.ones(features)) self.beta = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta class Decoder(nn.Module): def __init__(self, layer, N): super(Decoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.d_model) def forward(self, x, hidden_states, src_mask, tgt_mask, memory): for layer in self.layers: x = layer(x, hidden_states, src_mask, tgt_mask, memory) return self.norm(x) class DecoderLayer(nn.Module): def __init__(self, d_model, self_attn, src_attn, feed_forward, dropout, rm_num_slots, rm_d_model): super(DecoderLayer, self).__init__() self.d_model = d_model self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = clones(ConditionalSublayerConnection(d_model, dropout, rm_num_slots, rm_d_model), 3) def forward(self, x, hidden_states, src_mask, tgt_mask, memory): m = hidden_states x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask), memory) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask), memory) return self.sublayer[2](x, self.feed_forward, memory) class ConditionalSublayerConnection(nn.Module): def __init__(self, d_model, dropout, rm_num_slots, rm_d_model): super(ConditionalSublayerConnection, self).__init__() self.norm = ConditionalLayerNorm(d_model, rm_num_slots, rm_d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer, memory): return x + self.dropout(sublayer(self.norm(x, memory))) class ConditionalLayerNorm(nn.Module): def __init__(self, d_model, rm_num_slots, rm_d_model, eps=1e-6): super(ConditionalLayerNorm, self).__init__() self.gamma = nn.Parameter(torch.ones(d_model)) self.beta = nn.Parameter(torch.zeros(d_model)) self.rm_d_model = rm_d_model self.rm_num_slots = rm_num_slots self.eps = eps self.mlp_gamma = nn.Sequential(nn.Linear(rm_num_slots * rm_d_model, d_model), nn.ReLU(inplace=True), nn.Linear(rm_d_model, rm_d_model)) self.mlp_beta = nn.Sequential(nn.Linear(rm_num_slots * rm_d_model, d_model), nn.ReLU(inplace=True), nn.Linear(d_model, d_model)) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) nn.init.constant_(m.bias, 0.1) def forward(self, x, memory): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) delta_gamma = self.mlp_gamma(memory) delta_beta = self.mlp_beta(memory) gamma_hat = self.gamma.clone() beta_hat = self.beta.clone() gamma_hat = torch.stack([gamma_hat] * x.size(0), dim=0) gamma_hat = torch.stack([gamma_hat] * x.size(1), dim=1) beta_hat = torch.stack([beta_hat] * x.size(0), dim=0) beta_hat = torch.stack([beta_hat] * x.size(1), dim=1) gamma_hat += delta_gamma beta_hat += delta_beta return gamma_hat * (x - mean) / (std + self.eps) + beta_hat class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): if mask is not None: mask = mask.unsqueeze(1) nbatches = query.size(0) query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1)] return self.dropout(x) class RelationalMemory(nn.Module): def __init__(self, num_slots, d_model, num_heads=1): super(RelationalMemory, self).__init__() self.num_slots = num_slots self.num_heads = num_heads self.d_model = d_model self.attn = MultiHeadedAttention(num_heads, d_model) self.mlp = nn.Sequential(nn.Linear(self.d_model, self.d_model), nn.ReLU(), nn.Linear(self.d_model, self.d_model), nn.ReLU()) self.W = nn.Linear(self.d_model, self.d_model * 2) self.U = nn.Linear(self.d_model, self.d_model * 2) def init_memory(self, batch_size): memory = torch.stack([torch.eye(self.num_slots)] * batch_size) if self.d_model > self.num_slots: diff = self.d_model - self.num_slots pad = torch.zeros((batch_size, self.num_slots, diff)) memory = torch.cat([memory, pad], -1) elif self.d_model < self.num_slots: memory = memory[:, :, :self.d_model] return memory def forward_step(self, input, memory): # print('inputinputinputinputinput',input.size()) # print('memorymemorymemorymemorymemorymemory',memory.size()) memory = memory.reshape(-1, self.num_slots, self.d_model) # if input.shape[0]!=memory.shape[0]: # input=input.repeat(round(memory.shape[0]/input.shape[0]),1) q = memory k = torch.cat([memory, input.unsqueeze(1)], 1) v = torch.cat([memory, input.unsqueeze(1)], 1) next_memory = memory + self.attn(q, k, v) next_memory = next_memory + self.mlp(next_memory) gates = self.W(input.unsqueeze(1)) + self.U(torch.tanh(memory)) gates = torch.split(gates, split_size_or_sections=self.d_model, dim=2) input_gate, forget_gate = gates input_gate = torch.sigmoid(input_gate) forget_gate = torch.sigmoid(forget_gate) next_memory = input_gate * torch.tanh(next_memory) + forget_gate * memory next_memory = next_memory.reshape(-1, self.num_slots * self.d_model) return next_memory def forward(self, inputs, memory): outputs = [] for i in range(inputs.shape[1]): memory = self.forward_step(inputs[:, i], memory) outputs.append(memory) outputs = torch.stack(outputs, dim=1) return outputs class EncoderDecoder(AttModel): def make_model(self, tgt_vocab): c = copy.deepcopy attn = MultiHeadedAttention(self.num_heads, self.d_model) ff = PositionwiseFeedForward(self.d_model, self.d_ff, self.dropout) position = PositionalEncoding(self.d_model, self.dropout) rm = RelationalMemory(num_slots=self.rm_num_slots, d_model=self.rm_d_model, num_heads=self.rm_num_heads) model = Transformer( Encoder(EncoderLayer(self.d_model, c(attn), c(ff), self.dropout), self.num_layers), Decoder( DecoderLayer(self.d_model, c(attn), c(attn), c(ff), self.dropout, self.rm_num_slots, self.rm_d_model), self.num_layers), lambda x: x, nn.Sequential(Embeddings(self.d_model, tgt_vocab), c(position)), rm) for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model def __init__(self, args, tokenizer): super(EncoderDecoder, self).__init__(args, tokenizer) self.args = args self.num_layers = args.num_layers self.d_model = args.d_model self.d_ff = args.d_ff self.num_heads = args.num_heads self.dropout = args.dropout self.rm_num_slots = args.rm_num_slots self.rm_num_heads = args.rm_num_heads self.rm_d_model = args.rm_d_model tgt_vocab = self.vocab_size + 1 self.model = self.make_model(tgt_vocab) self.logit = nn.Linear(args.d_model, tgt_vocab) def init_hidden(self, bsz): return [] def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks) memory = self.model.encode(att_feats, att_masks) return fc_feats[..., :1], att_feats[..., :1], memory, att_masks def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None): att_feats, att_masks = self.clip_att(att_feats, att_masks) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) if att_masks is None: att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long) att_masks = att_masks.unsqueeze(-2) if seq is not None: # crop the last one seq = seq[:, :-1] seq_mask = (seq.data > 0) seq_mask[:, 0] += True seq_mask = seq_mask.unsqueeze(-2) seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask) else: seq_mask = None return att_feats, seq, att_masks, seq_mask def _forward(self, fc_feats, att_feats, seq, att_masks=None): att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq) out = self.model(att_feats, seq, att_masks, seq_mask) outputs = F.log_softmax(self.logit(out), dim=-1) return outputs def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask): if len(state) == 0: ys = it.unsqueeze(1) else: ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) out = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device)) return out[:, -1], [ys.unsqueeze(0)]