File size: 3,202 Bytes
6371026
 
 
 
 
 
 
862f904
6802ee4
64aec53
 
 
 
 
41d6954
64aec53
527b3f6
64aec53
 
6371026
 
 
 
 
 
64aec53
6371026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23fd35
6371026
 
 
 
862f904
41d6954
 
 
 
6371026
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
from transformers import pipeline, BertTokenizer, BertForSequenceClassification
import os
import pickle
import pandas as pd
from service_dops_api.dops_config import ServiceDopsConfig
from service_dops_api.dops_classifier import DopsClassifier
import json
HF_TOKEN = os.getenv('HF_TOKEN')
tokenizer_cat = BertTokenizer.from_pretrained("warleagle/service_name_categorizer",
                                          token=HF_TOKEN)
model_cat = BertForSequenceClassification.from_pretrained('warleagle/service_name_categorizer',token=HF_TOKEN)

tokenizer_spec = BertTokenizer.from_pretrained("warleagle/specialists_categorizer_model",
                                          token=HF_TOKEN)
model_spec = BertForSequenceClassification.from_pretrained('warleagle/specialists_categorizer_model',token=HF_TOKEN)

def categoriser_predict(input_text):
    clf = pipeline("text-classification", model=model_cat, tokenizer=tokenizer_cat)
    predictions = clf(input_text)
    numeric_label = int(predictions[0]['label'].split("_")[1])
    id2label = pd.read_pickle('id2label_service_categoriser.pickle')
    text_label = id2label[numeric_label]
    return text_label
def doctor_spec_predict(input_text):
    clf = pipeline("text-classification", model=model_spec, tokenizer=tokenizer_spec)
    predictions = clf(input_text)
    numeric_label = int(predictions[0]['label'].split("_")[1])
    id2label = pd.read_pickle('id2label_spec_categoriser.pickle')
    text_label = id2label[numeric_label]
    return text_label
def dops_predict(input_text):
    cfg = ServiceDopsConfig()
    model = DopsClassifier(config=cfg)
    result = model.run_all_dops(input_text)
    return result
def service_pipeline(input_text):
    categoriser_result = categoriser_predict(input_text)
    if categoriser_result!='Консультация специалиста':
        return 'Эта услуга не относится к приему специалиста','-','-'
    else:
        doctor_spec_result = doctor_spec_predict(input_text)
        dops_result = dops_predict(input_text)
        dops_result = json.dumps(dops_result,indent=4,ensure_ascii=False)
        return categoriser_result,doctor_spec_result,dops_result
demo = gr.Interface(fn=service_pipeline,inputs=gr.components.Textbox(label='Название услуги'),
                    outputs=[gr.components.Textbox(label='Относится ли данная услуга к приёму специалиста'),
                             gr.components.Textbox(label='Специальность врача'),
                             gr.Textbox(label='Дополнительные параметры услуги')],
                    examples=[
                        ['Врач-офтальмолог (высшая категория/кандидат медицинских наук), первичный приём'],
                        ['Прием (осмотр, консультация) - врача -оториноларинголога Первичный, рекомендации'],
                        ['Прием врача специалиста ЛОР']])

if __name__ == "__main__":
    demo.launch()