etadevosyan commited on
Commit
64aec53
·
1 Parent(s): 6802ee4

Models usage edited

Browse files
Files changed (1) hide show
  1. app.py +9 -8
app.py CHANGED
@@ -6,21 +6,22 @@ import pandas as pd
6
  from service_dops_api.dops_config import ServiceDopsConfig
7
  from service_dops_api.dops_classifier import DopsClassifier
8
  HF_TOKEN = os.getenv('HF_TOKEN')
9
- def categoriser_predict(input_text):
10
- tokenizer = BertTokenizer.from_pretrained("warleagle/service_name_categorizer",
 
 
 
11
  token=HF_TOKEN)
12
- model = BertForSequenceClassification.from_pretrained('warleagle/service_name_categorizer',token=HF_TOKEN)
13
- clf = pipeline("text-classification", model=model, tokenizer=tokenizer)
 
14
  predictions = clf(input_text)
15
  numeric_label = int(predictions[0]['label'].split("_")[1])
16
  id2label = pd.read_pickle('id2label_service_categoriser.pickle')
17
  text_label = id2label[numeric_label]
18
  return text_label
19
  def doctor_spec_predict(input_text):
20
- tokenizer = BertTokenizer.from_pretrained("warleagle/specialists_categorizer_model",
21
- token=HF_TOKEN)
22
- model = BertForSequenceClassification.from_pretrained('warleagle/specialists_categorizer_model',token=HF_TOKEN)
23
- clf = pipeline("text-classification", model=model, tokenizer=tokenizer)
24
  predictions = clf(input_text)
25
  numeric_label = int(predictions[0]['label'].split("_")[1])
26
  id2label = pd.read_pickle('id2label_spec_categoriser.pickle')
 
6
  from service_dops_api.dops_config import ServiceDopsConfig
7
  from service_dops_api.dops_classifier import DopsClassifier
8
  HF_TOKEN = os.getenv('HF_TOKEN')
9
+ tokenizer_cat = BertTokenizer.from_pretrained("warleagle/service_name_categorizer",
10
+ token=HF_TOKEN)
11
+ model_cat = BertForSequenceClassification.from_pretrained('warleagle/service_name_categorizer',token=HF_TOKEN)
12
+
13
+ tokenizer_spec = BertTokenizer.from_pretrained("warleagle/specialists_categorizer_model",
14
  token=HF_TOKEN)
15
+ model_spec = BertForSequenceClassification.from_pretrained('warleagle/specialists_categorizer_model',token=HF_TOKEN)
16
+ def categoriser_predict(input_text):
17
+ clf = pipeline("text-classification", model=model_cat, tokenizer=tokenizer_cat)
18
  predictions = clf(input_text)
19
  numeric_label = int(predictions[0]['label'].split("_")[1])
20
  id2label = pd.read_pickle('id2label_service_categoriser.pickle')
21
  text_label = id2label[numeric_label]
22
  return text_label
23
  def doctor_spec_predict(input_text):
24
+ clf = pipeline("text-classification", model=model_spec, tokenizer=tokenizer_spec)
 
 
 
25
  predictions = clf(input_text)
26
  numeric_label = int(predictions[0]['label'].split("_")[1])
27
  id2label = pd.read_pickle('id2label_spec_categoriser.pickle')