File size: 9,452 Bytes
6d9d748
236f099
 
 
5f87ad8
236f099
627260a
 
c8ca415
236f099
5f87ad8
a2dd161
 
236f099
dc8f8ae
c8ca415
a24adca
236f099
0652ed7
 
627260a
 
 
a24adca
a348ce9
aca4325
b9d7680
236f099
a348ce9
df42351
5f87ad8
236f099
 
dc8f8ae
 
 
 
 
 
 
 
 
c8ca415
8e6df7d
 
c8ca415
 
236f099
b9d7680
236f099
5f87ad8
 
 
236f099
 
 
 
 
5f87ad8
236f099
 
 
 
 
 
5f87ad8
 
 
236f099
 
 
 
 
 
 
 
 
 
 
 
 
c8ca415
236f099
5f87ad8
236f099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f87ad8
236f099
 
 
 
 
 
1acae0b
5f87ad8
236f099
 
 
5f87ad8
236f099
5f87ad8
 
 
236f099
5f87ad8
236f099
5f87ad8
236f099
 
 
 
 
5f87ad8
236f099
 
 
b9d7680
 
 
 
5f87ad8
236f099
5f87ad8
236f099
 
b9d7680
 
 
236f099
 
32b462e
 
 
 
d509a14
32b462e
 
9a6bfa6
5bad384
9a6bfa6
5bad384
9a6bfa6
 
 
 
 
 
 
5bad384
9a6bfa6
5bad384
9a6bfa6
5bad384
9a6bfa6
 
 
 
 
 
 
5bad384
9a6bfa6
 
 
 
 
 
 
5bad384
9a6bfa6
4a3419a
 
 
 
 
 
 
5bad384
9a6bfa6
 
 
 
 
 
 
5bad384
9a6bfa6
 
 
 
 
 
5bad384
b532ea0
 
 
 
 
 
 
5bad384
32b462e
 
d509a14
32b462e
afaa37c
32b462e
 
 
b9d7680
d509a14
 
b9d7680
 
32b462e
8c62f71
a75afd6
4a3419a
 
 
 
a75afd6
 
 
 
 
32b462e
a103ff6
3debdb5
4a3419a
 
 
a103ff6
4a3419a
 
 
 
 
 
 
 
 
a2dd161
4a3419a
 
752f1c6
 
4a3419a
579821d
8ff09a6
752f1c6
 
32b462e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
#from diffusers import DiffusionPipeline
from diffusers import AutoPipelineForImage2Image
from huggingface_hub import InferenceClient

dtype = torch.bfloat16
device = "cuda" 
#if torch.cuda.is_available() else "cpu"

#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
sdxl = InferenceClient(model="stabilityai/stable-diffusion-xl-base-1.0", token=os.environ['HF_TOKEN'])
print('sdxl loaded')

"kandinsky-community/kandinsky-2-2-decoder"
#pipeline2Image = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtypes=torch.bfloat16).to(device)
#pipeline2Image = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtypes=torch.bfloat16).to(device)
pipeline2Image = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=dtype)
pipeline2Image.enable_model_cpu_offload()
print("pipeline 2 image loaded")

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# (duration=190)
#@spaces.GPU
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
#    generator = torch.Generator().manual_seed(seed)
#    image = pipe(
#        prompt=prompt, 
#        width=width,
#        height=height,
#        num_inference_steps=num_inference_steps, 
#        generator=generator,
#        guidance_scale=guidance_scale
#    ).images[0] 
    image = sdxl.text_to_image(
        prompt,
        guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, seed=seed,width=width, height=height
    )
    
    return image, seed

examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

    # Adding image input options at the bottom
    gr.Markdown("## Upload or select an additional image")
    
    with gr.Row():
        uploaded_image = gr.Image(label="Upload Image", type="pil")
        image_url = gr.Textbox(label="Image URL", placeholder="Enter image URL")
        use_generated_image = gr.Button("Use Generated Image")

    with gr.Accordion("Advanced Settings", open=False):
            
        seed2 = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
        randomize_seed2 = gr.Checkbox(label="Randomize seed", value=True)
            
        with gr.Row():
                
            width2 = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
            height2 = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
        with gr.Row():

            strength2 = gr.Slider(
                    label="Strength",
                    minimum=.1,
                    maximum=1,
                    step=0.1,
                    value=.5,
                )
            guidance_scale2 = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
            num_inference_steps2 = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

    prompt2 = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
    run2_button = gr.Button("Run", scale=0)
    additional_image_output = gr.Image(label="Selected Image", show_label=False)

    def select_image(uploaded_image, image_url, use_generated=False):
        if use_generated:
            return result.value
        elif uploaded_image is not None:
            return uploaded_image
        elif image_url:
            try:
                img = gr.Image.load(image_url)
                return img
            except Exception as e:
                return f"Failed to load image from URL: {e}"
        return None

    def image2image(uploaded_image, image_url, use_generated=False):
        image = select_image(uploaded_image, image_url, use_generated=use_generated)
        #prompt = "one awesome dude"
        #generator = torch.Generator(device=device).manual_seed(1024)
        #image = pipeline2Image(prompt=prompt, image=image, strength=0.75, guidance_scale=7.5, generator=generator).images[0]
        return image
    
    use_generated_image.click(fn=lambda: image2image(None, None, True), inputs=[], outputs=additional_image_output)
    uploaded_image.change(fn=image2image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=additional_image_output)
    image_url.submit(fn=image2image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=additional_image_output)

    @spaces.GPU(duration=190)
    def infer2(prompt, image, seed=42, randomize_seed=False, width=1024, height=1024, strength=.5, guidance_scale=5.0, num_inference_steps=28):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        generator = torch.Generator(device=device).manual_seed(seed)
        image2 = pipeline2Image(prompt=prompt, image=image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator).images[0]
#    generator = torch.Generator().manual_seed(seed)
#    image = pipe(
#        prompt=prompt, 
#        width=width,
#        height=height,
#        num_inference_steps=num_inference_steps, 
#        generator=generator,
#        guidance_scale=guidance_scale
#    ).images[0] 
        return image2, seed
    final_image_output = gr.Image(label="Final Image", show_label=False)
    
    gr.on(
        triggers=[run2_button.click, prompt2.submit],
        fn=infer2,
        inputs=[prompt2, torch.from_numpy(additional_image_output), seed2, randomize_seed2, width2, height2, strength2, guidance_scale2, num_inference_steps2],
        outputs=[final_image_output, seed2]
    )

demo.launch()