Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,10 @@ from huggingface_hub import InferenceClient
|
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
14 |
sdxl = InferenceClient(model="stabilityai/stable-diffusion-xl-base-1.0", token=os.environ['HF_TOKEN'])
|
15 |
|
16 |
-
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 2048
|
@@ -23,18 +23,18 @@ MAX_IMAGE_SIZE = 2048
|
|
23 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
24 |
if randomize_seed:
|
25 |
seed = random.randint(0, MAX_SEED)
|
26 |
-
generator = torch.Generator().manual_seed(seed)
|
27 |
-
image = pipe(
|
28 |
-
prompt=prompt,
|
29 |
-
width=width,
|
30 |
-
height=height,
|
31 |
-
num_inference_steps=num_inference_steps,
|
32 |
-
generator=generator,
|
33 |
-
guidance_scale=guidance_scale
|
34 |
-
).images[0]
|
35 |
image = sdxl.text_to_image(
|
36 |
"Dark gothic city in a misty night, lit by street lamps. A man in a cape is walking away from us",
|
37 |
-
guidance_scale=9, num_inference_steps=
|
38 |
)
|
39 |
|
40 |
return image, seed
|
|
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
14 |
sdxl = InferenceClient(model="stabilityai/stable-diffusion-xl-base-1.0", token=os.environ['HF_TOKEN'])
|
15 |
|
16 |
+
pipeline2Image = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtypes=torch.bfloat16).to("cpu")
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 2048
|
|
|
23 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
24 |
if randomize_seed:
|
25 |
seed = random.randint(0, MAX_SEED)
|
26 |
+
# generator = torch.Generator().manual_seed(seed)
|
27 |
+
# image = pipe(
|
28 |
+
# prompt=prompt,
|
29 |
+
# width=width,
|
30 |
+
# height=height,
|
31 |
+
# num_inference_steps=num_inference_steps,
|
32 |
+
# generator=generator,
|
33 |
+
# guidance_scale=guidance_scale
|
34 |
+
# ).images[0]
|
35 |
image = sdxl.text_to_image(
|
36 |
"Dark gothic city in a misty night, lit by street lamps. A man in a cape is walking away from us",
|
37 |
+
guidance_scale=9, num_inference_steps=num_inference_steps, seed=seed,width=width, height=height)
|
38 |
)
|
39 |
|
40 |
return image, seed
|