Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,7 @@ import numpy as np
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
from diffusers import
|
7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -12,7 +11,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
12 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
-
MAX_IMAGE_SIZE = 2048
|
16 |
|
17 |
@spaces.GPU(duration=190)
|
18 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
@@ -20,15 +19,15 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
20 |
seed = random.randint(0, MAX_SEED)
|
21 |
generator = torch.Generator().manual_seed(seed)
|
22 |
image = pipe(
|
23 |
-
prompt
|
24 |
-
width
|
25 |
-
height
|
26 |
-
num_inference_steps
|
27 |
-
generator
|
28 |
guidance_scale=guidance_scale
|
29 |
).images[0]
|
30 |
return image, seed
|
31 |
-
|
32 |
examples = [
|
33 |
"a tiny astronaut hatching from an egg on the moon",
|
34 |
"a cat holding a sign that says hello world",
|
@@ -113,18 +112,18 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
)
|
114 |
|
115 |
gr.Examples(
|
116 |
-
examples
|
117 |
-
fn
|
118 |
-
inputs
|
119 |
-
outputs
|
120 |
cache_examples="lazy"
|
121 |
)
|
122 |
|
123 |
gr.on(
|
124 |
triggers=[run_button.click, prompt.submit],
|
125 |
-
fn
|
126 |
-
inputs
|
127 |
-
outputs
|
128 |
)
|
129 |
|
130 |
# Adding image input options at the bottom
|
@@ -137,18 +136,21 @@ with gr.Blocks(css=css) as demo:
|
|
137 |
|
138 |
additional_image_output = gr.Image(label="Selected Image", show_label=False)
|
139 |
|
140 |
-
def select_image(uploaded_image, image_url, use_generated
|
141 |
if use_generated:
|
142 |
-
return result
|
143 |
elif uploaded_image is not None:
|
144 |
return uploaded_image
|
145 |
elif image_url:
|
146 |
-
|
|
|
|
|
|
|
147 |
return None
|
148 |
|
149 |
# Updated click and change triggers
|
150 |
use_generated_image.click(lambda: select_image(None, None, True), inputs=[], outputs=[additional_image_output])
|
151 |
-
uploaded_image.change(select_image, inputs=[uploaded_image, image_url], outputs=[additional_image_output])
|
152 |
-
image_url.submit(select_image, inputs=[uploaded_image, image_url], outputs=[additional_image_output])
|
153 |
|
154 |
demo.launch()
|
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from diffusers import DiffusionPipeline
|
|
|
7 |
|
8 |
dtype = torch.bfloat16
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
12 |
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
+
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
@spaces.GPU(duration=190)
|
17 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
|
|
19 |
seed = random.randint(0, MAX_SEED)
|
20 |
generator = torch.Generator().manual_seed(seed)
|
21 |
image = pipe(
|
22 |
+
prompt=prompt,
|
23 |
+
width=width,
|
24 |
+
height=height,
|
25 |
+
num_inference_steps=num_inference_steps,
|
26 |
+
generator=generator,
|
27 |
guidance_scale=guidance_scale
|
28 |
).images[0]
|
29 |
return image, seed
|
30 |
+
|
31 |
examples = [
|
32 |
"a tiny astronaut hatching from an egg on the moon",
|
33 |
"a cat holding a sign that says hello world",
|
|
|
112 |
)
|
113 |
|
114 |
gr.Examples(
|
115 |
+
examples=examples,
|
116 |
+
fn=infer,
|
117 |
+
inputs=[prompt],
|
118 |
+
outputs=[result, seed],
|
119 |
cache_examples="lazy"
|
120 |
)
|
121 |
|
122 |
gr.on(
|
123 |
triggers=[run_button.click, prompt.submit],
|
124 |
+
fn=infer,
|
125 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
126 |
+
outputs=[result, seed]
|
127 |
)
|
128 |
|
129 |
# Adding image input options at the bottom
|
|
|
136 |
|
137 |
additional_image_output = gr.Image(label="Selected Image", show_label=False)
|
138 |
|
139 |
+
def select_image(uploaded_image, image_url, use_generated):
|
140 |
if use_generated:
|
141 |
+
return result.value # Return the value of the generated image
|
142 |
elif uploaded_image is not None:
|
143 |
return uploaded_image
|
144 |
elif image_url:
|
145 |
+
try:
|
146 |
+
return gr.Image.load(image_url)
|
147 |
+
except Exception as e:
|
148 |
+
return f"Failed to load image from URL: {e}"
|
149 |
return None
|
150 |
|
151 |
# Updated click and change triggers
|
152 |
use_generated_image.click(lambda: select_image(None, None, True), inputs=[], outputs=[additional_image_output])
|
153 |
+
uploaded_image.change(select_image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=[additional_image_output])
|
154 |
+
image_url.submit(select_image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=[additional_image_output])
|
155 |
|
156 |
demo.launch()
|