|
import pandas as pd |
|
from catboost import CatBoostClassifier |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import roc_auc_score |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["id", "target"], axis=1) |
|
y = train_data["target"] |
|
X_test = test_data.drop(["id"], axis=1) |
|
|
|
|
|
cat_features = [col for col in X.columns if X[col].dtype == "object"] |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = CatBoostClassifier( |
|
iterations=100, |
|
learning_rate=0.1, |
|
depth=4, |
|
loss_function="Logloss", |
|
early_stopping_rounds=10, |
|
verbose=False, |
|
) |
|
|
|
|
|
model.fit(X_train, y_train, cat_features=cat_features) |
|
|
|
|
|
val_pred = model.predict_proba(X_val)[:, 1] |
|
|
|
|
|
val_auc = roc_auc_score(y_val, val_pred) |
|
print(f"Validation AUC: {val_auc}") |
|
|
|
|
|
final_model = CatBoostClassifier( |
|
iterations=1000, |
|
learning_rate=0.1, |
|
depth=4, |
|
loss_function="Logloss", |
|
early_stopping_rounds=10, |
|
verbose=False, |
|
) |
|
|
|
final_model.fit(X, y, cat_features=cat_features) |
|
|
|
|
|
test_pred = final_model.predict_proba(X_test)[:, 1] |
|
|
|
|
|
submission = pd.DataFrame({"id": test_data["id"], "target": test_pred}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|