import pandas as pd from catboost import CatBoostClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate features and target X = train_data.drop(["id", "target"], axis=1) y = train_data["target"] X_test = test_data.drop(["id"], axis=1) # Identify categorical features cat_features = [col for col in X.columns if X[col].dtype == "object"] # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize the CatBoostClassifier with a smaller number of iterations for faster grid search model = CatBoostClassifier( iterations=100, # Reduced number of iterations for grid search learning_rate=0.1, depth=4, loss_function="Logloss", early_stopping_rounds=10, verbose=False, ) # Fit the model on the training data model.fit(X_train, y_train, cat_features=cat_features) # Predict on the validation set val_pred = model.predict_proba(X_val)[:, 1] # Calculate the ROC AUC score val_auc = roc_auc_score(y_val, val_pred) print(f"Validation AUC: {val_auc}") # Train the final model on the full dataset with more iterations final_model = CatBoostClassifier( iterations=1000, # Increased number of iterations for final training learning_rate=0.1, depth=4, loss_function="Logloss", early_stopping_rounds=10, verbose=False, ) final_model.fit(X, y, cat_features=cat_features) # Predict on the test set test_pred = final_model.predict_proba(X_test)[:, 1] # Save the predictions to a CSV file submission = pd.DataFrame({"id": test_data["id"], "target": test_pred}) submission.to_csv("./working/submission.csv", index=False)