File size: 1,822 Bytes
5cbc1e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import pandas as pd
from catboost import CatBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
# Load the data
train_data = pd.read_csv("./input/train.csv")
test_data = pd.read_csv("./input/test.csv")
# Separate features and target
X = train_data.drop(["id", "target"], axis=1)
y = train_data["target"]
X_test = test_data.drop(["id"], axis=1)
# Identify categorical features
cat_features = [col for col in X.columns if X[col].dtype == "object"]
# Split the data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize the CatBoostClassifier with a smaller number of iterations for faster grid search
model = CatBoostClassifier(
iterations=100, # Reduced number of iterations for grid search
learning_rate=0.1,
depth=4,
loss_function="Logloss",
early_stopping_rounds=10,
verbose=False,
)
# Fit the model on the training data
model.fit(X_train, y_train, cat_features=cat_features)
# Predict on the validation set
val_pred = model.predict_proba(X_val)[:, 1]
# Calculate the ROC AUC score
val_auc = roc_auc_score(y_val, val_pred)
print(f"Validation AUC: {val_auc}")
# Train the final model on the full dataset with more iterations
final_model = CatBoostClassifier(
iterations=1000, # Increased number of iterations for final training
learning_rate=0.1,
depth=4,
loss_function="Logloss",
early_stopping_rounds=10,
verbose=False,
)
final_model.fit(X, y, cat_features=cat_features)
# Predict on the test set
test_pred = final_model.predict_proba(X_test)[:, 1]
# Save the predictions to a CSV file
submission = pd.DataFrame({"id": test_data["id"], "target": test_pred})
submission.to_csv("./working/submission.csv", index=False)
|