File size: 7,752 Bytes
1de0dc0 bebad14 1de0dc0 7d9b175 1de0dc0 7d9b175 1de0dc0 7d9b175 bebad14 dffaf30 bebad14 7d9b175 bebad14 f17a933 1de0dc0 f17a933 1de0dc0 bebad14 f17a933 7d9b175 f17a933 1de0dc0 f17a933 1de0dc0 f17a933 1de0dc0 f17a933 1de0dc0 f17a933 1de0dc0 f17a933 1de0dc0 f17a933 1de0dc0 f17a933 1de0dc0 f17a933 1de0dc0 f17a933 1de0dc0 be507b5 1de0dc0 7d9b175 bebad14 1de0dc0 bebad14 7d9b175 f17a933 7d9b175 f17a933 7d9b175 f624b87 7d9b175 f17a933 7d9b175 f17a933 dffaf30 bebad14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import random
import time
from pathlib import Path
import numpy as np
import pandas as pd
from biotite.structure.atoms import AtomArrayStack
from scipy.spatial.transform import Rotation as R
from pinder.core import PinderSystem
from pinder.core.structure import atoms
from pinder.core.structure.contacts import get_stack_contacts
from pinder.core.loader.structure import Structure
from pinder.eval.dockq import BiotiteDockQ
import gradio as gr
from gradio_molecule3d import Molecule3D
EVAL_METRICS = ["system", "L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]
def predict(
receptor_pdb: Path,
ligand_pdb: Path,
receptor_fasta: Path | None = None,
ligand_fasta: Path | None = None,
) -> tuple[str, float]:
start_time = time.time()
# Do inference here
# return an output pdb file with the protein and two chains R and L.
receptor = atoms.atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
ligand = atoms.atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
receptor = atoms.normalize_orientation(receptor)
ligand = atoms.normalize_orientation(ligand)
# Number of random poses to generate
M = 50
# Inititalize an empty stack with shape (m x n x 3)
stack = AtomArrayStack(M, ligand.shape[0])
# copy annotations from ligand
for annot in ligand.get_annotation_categories():
stack.set_annotation(annot, np.copy(ligand.get_annotation(annot)))
# Random translations sampled along 0-50 angstroms per axis
translation_magnitudes = np.linspace(0, 26, num=26, endpoint=False)
# generate one pose at a time
for i in range(M):
q = R.random()
translation_vec = [
random.choice(translation_magnitudes), # x
random.choice(translation_magnitudes), # y
random.choice(translation_magnitudes), # z
]
# transform the ligand chain
stack.coord[i, ...] = q.apply(ligand.coord) + translation_vec
# Find clashes (1.2 A contact radius)
stack_conts = get_stack_contacts(receptor, stack, threshold=1.2)
# Keep the "best" pose based on pose w/fewest clashes
pose_clashes = []
for i in range(stack_conts.shape[0]):
pose_conts = stack_conts[i]
pose_clashes.append((i, np.argwhere(pose_conts != -1).shape[0]))
best_pose_idx = sorted(pose_clashes, key=lambda x: x[1])[0][0]
best_pose = receptor + stack[best_pose_idx]
output_dir = Path(receptor_pdb).parent
# System ID
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name
output_pdb = output_dir / pdb_name
atoms.write_pdb(best_pose, output_pdb)
end_time = time.time()
run_time = end_time - start_time
return str(output_pdb), run_time
def evaluate(
system_id: str,
prediction_pdb: Path,
) -> tuple[pd.DataFrame, float]:
start_time = time.time()
system = PinderSystem(system_id)
native = system.native.filepath
bdq = BiotiteDockQ(native, Path(prediction_pdb), parallel_io=False)
metrics = bdq.calculate()
metrics = metrics[["system", "LRMS", "iRMS", "Fnat", "DockQ", "CAPRI"]].copy()
metrics.rename(
columns={
"LRMS": "L_rms",
"iRMS": "I_rms",
"Fnat": "F_nat",
"DockQ": "DOCKQ",
"CAPRI": "CAPRI_class",
},
inplace=True,
)
end_time = time.time()
run_time = end_time - start_time
pred = Structure(Path(prediction_pdb))
nat = Structure(Path(native))
pred, _, _ = pred.superimpose(nat)
pred.to_pdb(Path(prediction_pdb))
return metrics, [str(prediction_pdb), str(native)], run_time
with gr.Blocks() as app:
with gr.Tab("🧬 PINDER inference template"):
gr.Markdown("Title, description, and other information about the model")
with gr.Row():
with gr.Column():
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)")
input_fasta_1 = gr.File(
label="Input Protein 1 monomer sequence (FASTA)"
)
with gr.Column():
input_protein_2 = gr.File(label="Input Protein 2 monomer (PDB)")
input_fasta_2 = gr.File(
label="Input Protein 2 monomer sequence (FASTA)"
)
# define any options here
# for automated inference the default options are used
# slider_option = gr.Slider(0,10, label="Slider Option")
# checkbox_option = gr.Checkbox(label="Checkbox Option")
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
btn = gr.Button("Run Inference")
gr.Examples(
[
[
"8i5w_R.pdb",
"8i5w_R.fasta",
"8i5w_L.pdb",
"8i5w_L.fasta",
],
],
[input_protein_1, input_fasta_1, input_protein_2, input_fasta_2],
)
reps = [
{
"model": 0,
"style": "cartoon",
"chain": "R",
"color": "whiteCarbon",
},
{
"model": 0,
"style": "cartoon",
"chain": "L",
"color": "greenCarbon",
},
{
"model": 0,
"chain": "R",
"style": "stick",
"sidechain": True,
"color": "whiteCarbon",
},
{
"model": 0,
"chain": "L",
"style": "stick",
"sidechain": True,
"color": "greenCarbon",
},
]
out = Molecule3D(reps=reps)
run_time = gr.Textbox(label="Runtime")
btn.click(
predict,
inputs=[input_protein_1, input_protein_2, input_fasta_1, input_fasta_2],
outputs=[out, run_time],
)
with gr.Tab("⚖️ PINDER evaluation template"):
with gr.Row():
with gr.Column():
input_system_id = gr.Textbox(label="PINDER system ID")
input_prediction_pdb = gr.File(
label="Top ranked prediction (PDB with chains R and L)"
)
eval_btn = gr.Button("Run Evaluation")
gr.Examples(
[
[
"3g9w__A1_Q71LX4--3g9w__D1_P05556",
"3g9w_R--3g9w_L.pdb",
],
],
[input_system_id, input_prediction_pdb],
)
reps = [
{
"model": 0,
"style": "cartoon",
"chain": "R",
"color": "greenCarbon",
},
{
"model": 0,
"style": "cartoon",
"chain": "L",
"color": "cyanCarbon",
},
{
"model": 1,
"style": "cartoon",
"chain": "R",
"color": "grayCarbon",
},
{
"model": 1,
"style": "cartoon",
"chain": "L",
"color": "blueCarbon",
},
]
pred_native = Molecule3D(reps=reps, config={"backgroundColor": "black"})
eval_run_time = gr.Textbox(label="Evaluation runtime")
metric_table = gr.DataFrame(
pd.DataFrame([], columns=EVAL_METRICS), label="Evaluation metrics"
)
eval_btn.click(
evaluate,
inputs=[input_system_id, input_prediction_pdb],
outputs=[metric_table, pred_native, eval_run_time],
)
app.launch()
|