Commit
·
1de0dc0
1
Parent(s):
7d59aa6
feat: update inference app template to implement a dummy poc predict endpoint that follows the suggested input specs
Browse files- inference_app.py +80 -20
inference_app.py
CHANGED
@@ -1,20 +1,81 @@
|
|
1 |
-
|
2 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
|
6 |
from gradio_molecule3d import Molecule3D
|
7 |
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
12 |
start_time = time.time()
|
13 |
# Do inference here
|
14 |
# return an output pdb file with the protein and two chains A and B.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
end_time = time.time()
|
16 |
run_time = end_time - start_time
|
17 |
-
return
|
|
|
18 |
|
19 |
with gr.Blocks() as app:
|
20 |
|
@@ -23,11 +84,11 @@ with gr.Blocks() as app:
|
|
23 |
gr.Markdown("Title, description, and other information about the model")
|
24 |
with gr.Row():
|
25 |
with gr.Column():
|
26 |
-
|
27 |
-
|
28 |
with gr.Column():
|
29 |
-
|
30 |
-
|
31 |
|
32 |
|
33 |
|
@@ -43,38 +104,37 @@ with gr.Blocks() as app:
|
|
43 |
gr.Examples(
|
44 |
[
|
45 |
[
|
46 |
-
"
|
47 |
-
"
|
48 |
-
"
|
49 |
-
"
|
50 |
-
|
51 |
],
|
52 |
],
|
53 |
-
[
|
54 |
)
|
55 |
reps = [
|
56 |
{
|
57 |
"model": 0,
|
58 |
"style": "cartoon",
|
59 |
-
"chain": "
|
60 |
"color": "whiteCarbon",
|
61 |
},
|
62 |
{
|
63 |
"model": 0,
|
64 |
"style": "cartoon",
|
65 |
-
"chain": "
|
66 |
"color": "greenCarbon",
|
67 |
},
|
68 |
{
|
69 |
"model": 0,
|
70 |
-
"chain": "
|
71 |
"style": "stick",
|
72 |
"sidechain": True,
|
73 |
"color": "whiteCarbon",
|
74 |
},
|
75 |
{
|
76 |
"model": 0,
|
77 |
-
"chain": "
|
78 |
"style": "stick",
|
79 |
"sidechain": True,
|
80 |
"color": "greenCarbon"
|
@@ -84,6 +144,6 @@ with gr.Blocks() as app:
|
|
84 |
out = Molecule3D(reps=reps)
|
85 |
run_time = gr.Textbox(label="Runtime")
|
86 |
|
87 |
-
btn.click(predict, inputs=[
|
88 |
|
89 |
app.launch()
|
|
|
1 |
+
import random
|
2 |
import time
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from biotite.structure.atoms import AtomArrayStack
|
7 |
+
from scipy.spatial.transform import Rotation as R
|
8 |
+
from pinder.core.structure.atoms import atom_array_from_pdb_file, normalize_orientation, write_pdb
|
9 |
+
from pinder.core.structure.contacts import get_stack_contacts
|
10 |
|
11 |
import gradio as gr
|
12 |
|
13 |
from gradio_molecule3d import Molecule3D
|
14 |
|
15 |
|
16 |
+
def predict(
|
17 |
+
receptor_pdb: Path,
|
18 |
+
ligand_pdb: Path,
|
19 |
+
receptor_fasta: Path | None = None,
|
20 |
+
ligand_fasta: Path | None = None,
|
21 |
+
) -> tuple[str, float]:
|
22 |
start_time = time.time()
|
23 |
# Do inference here
|
24 |
# return an output pdb file with the protein and two chains A and B.
|
25 |
+
receptor = atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
|
26 |
+
ligand = atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
|
27 |
+
receptor = normalize_orientation(receptor)
|
28 |
+
ligand = normalize_orientation(ligand)
|
29 |
+
|
30 |
+
# Number of random poses to generate
|
31 |
+
M = 50
|
32 |
+
# Inititalize an empty stack with shape (m x n x 3)
|
33 |
+
stack = AtomArrayStack(M, ligand.shape[0])
|
34 |
+
|
35 |
+
# copy annotations from ligand
|
36 |
+
for annot in ligand.get_annotation_categories():
|
37 |
+
stack.set_annotation(annot, np.copy(ligand.get_annotation(annot)))
|
38 |
+
|
39 |
+
# Random translations sampled along 0-50 angstroms per axis
|
40 |
+
translation_magnitudes = np.linspace(
|
41 |
+
0, M + 1,
|
42 |
+
num=M + 1,
|
43 |
+
endpoint=False
|
44 |
+
)
|
45 |
+
# generate one pose at a time
|
46 |
+
for i in range(M):
|
47 |
+
q = R.random()
|
48 |
+
translation_vec = [
|
49 |
+
random.choice(translation_magnitudes), # x
|
50 |
+
random.choice(translation_magnitudes), # y
|
51 |
+
random.choice(translation_magnitudes), # z
|
52 |
+
]
|
53 |
+
# transform the ligand chain
|
54 |
+
stack.coord[i, ...] = q.apply(ligand.coord) + translation_vec
|
55 |
+
|
56 |
+
# Find clashes (1.2 A contact radius)
|
57 |
+
stack_conts = get_stack_contacts(receptor, stack, threshold=1.2)
|
58 |
+
|
59 |
+
# Keep the "best" pose based on pose w/fewest clashes
|
60 |
+
pose_clashes = []
|
61 |
+
for i in range(stack_conts.shape[0]):
|
62 |
+
pose_conts = stack_conts[i]
|
63 |
+
pose_clashes.append((i, np.argwhere(pose_conts != -1).shape[0]))
|
64 |
+
|
65 |
+
best_pose_idx = sorted(pose_clashes, key=lambda x: x[1])[0][0]
|
66 |
+
best_pose = receptor + stack[best_pose_idx]
|
67 |
+
|
68 |
+
output_dir = Path(receptor_pdb).parent
|
69 |
+
# System ID
|
70 |
+
pdb_name = "--".join([
|
71 |
+
Path(receptor_pdb).stem.rstrip("-R"), Path(ligand_pdb).stem.rstrip("-L")
|
72 |
+
]) + ".pdb"
|
73 |
+
output_pdb = output_dir / pdb_name
|
74 |
+
write_pdb(best_pose, output_pdb)
|
75 |
end_time = time.time()
|
76 |
run_time = end_time - start_time
|
77 |
+
return str(output_pdb), run_time
|
78 |
+
|
79 |
|
80 |
with gr.Blocks() as app:
|
81 |
|
|
|
84 |
gr.Markdown("Title, description, and other information about the model")
|
85 |
with gr.Row():
|
86 |
with gr.Column():
|
87 |
+
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)")
|
88 |
+
input_fasta_1 = gr.File(label="Input Protein 1 monomer sequence (FASTA)")
|
89 |
with gr.Column():
|
90 |
+
input_protein_2 = gr.File(label="Input Protein 2 monomer (PDB)")
|
91 |
+
input_fasta_2 = gr.File(label="Input Protein 2 monomer sequence (FASTA)")
|
92 |
|
93 |
|
94 |
|
|
|
104 |
gr.Examples(
|
105 |
[
|
106 |
[
|
107 |
+
"8i5w_R.pdb",
|
108 |
+
"8i5w_R.fasta",
|
109 |
+
"8i5w_L.pdb",
|
110 |
+
"8i5w_L.fasta",
|
|
|
111 |
],
|
112 |
],
|
113 |
+
[input_protein_1, input_fasta_1, input_protein_2, input_fasta_2],
|
114 |
)
|
115 |
reps = [
|
116 |
{
|
117 |
"model": 0,
|
118 |
"style": "cartoon",
|
119 |
+
"chain": "R",
|
120 |
"color": "whiteCarbon",
|
121 |
},
|
122 |
{
|
123 |
"model": 0,
|
124 |
"style": "cartoon",
|
125 |
+
"chain": "L",
|
126 |
"color": "greenCarbon",
|
127 |
},
|
128 |
{
|
129 |
"model": 0,
|
130 |
+
"chain": "R",
|
131 |
"style": "stick",
|
132 |
"sidechain": True,
|
133 |
"color": "whiteCarbon",
|
134 |
},
|
135 |
{
|
136 |
"model": 0,
|
137 |
+
"chain": "L",
|
138 |
"style": "stick",
|
139 |
"sidechain": True,
|
140 |
"color": "greenCarbon"
|
|
|
144 |
out = Molecule3D(reps=reps)
|
145 |
run_time = gr.Textbox(label="Runtime")
|
146 |
|
147 |
+
btn.click(predict, inputs=[input_protein_1, input_protein_2, input_fasta_1, input_fasta_2], outputs=[out, run_time])
|
148 |
|
149 |
app.launch()
|