Commit
·
7d9b175
1
Parent(s):
722b2f2
feat: add example evaluate endpoint to fetch metrics for a single prediction given model and system ID
Browse files- inference_app.py +141 -70
inference_app.py
CHANGED
@@ -3,15 +3,20 @@ import time
|
|
3 |
from pathlib import Path
|
4 |
|
5 |
import numpy as np
|
|
|
6 |
from biotite.structure.atoms import AtomArrayStack
|
7 |
from scipy.spatial.transform import Rotation as R
|
8 |
-
from pinder.core
|
|
|
9 |
from pinder.core.structure.contacts import get_stack_contacts
|
|
|
|
|
10 |
|
11 |
import gradio as gr
|
12 |
|
13 |
from gradio_molecule3d import Molecule3D
|
14 |
|
|
|
15 |
|
16 |
def predict(
|
17 |
receptor_pdb: Path,
|
@@ -22,10 +27,10 @@ def predict(
|
|
22 |
start_time = time.time()
|
23 |
# Do inference here
|
24 |
# return an output pdb file with the protein and two chains R and L.
|
25 |
-
receptor = atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
|
26 |
-
ligand = atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
|
27 |
-
receptor = normalize_orientation(receptor)
|
28 |
-
ligand = normalize_orientation(ligand)
|
29 |
|
30 |
# Number of random poses to generate
|
31 |
M = 50
|
@@ -69,79 +74,145 @@ def predict(
|
|
69 |
# System ID
|
70 |
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name
|
71 |
output_pdb = output_dir / pdb_name
|
72 |
-
write_pdb(best_pose, output_pdb)
|
73 |
end_time = time.time()
|
74 |
run_time = end_time - start_time
|
75 |
return str(output_pdb), run_time
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Blocks() as app:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
"
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
|
147 |
app.launch()
|
|
|
3 |
from pathlib import Path
|
4 |
|
5 |
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
from biotite.structure.atoms import AtomArrayStack
|
8 |
from scipy.spatial.transform import Rotation as R
|
9 |
+
from pinder.core import PinderSystem
|
10 |
+
from pinder.core.structure import atoms
|
11 |
from pinder.core.structure.contacts import get_stack_contacts
|
12 |
+
from pinder.core.loader.structure import Structure
|
13 |
+
from pinder.eval.dockq import BiotiteDockQ
|
14 |
|
15 |
import gradio as gr
|
16 |
|
17 |
from gradio_molecule3d import Molecule3D
|
18 |
|
19 |
+
EVAL_METRICS = ["system", "L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]
|
20 |
|
21 |
def predict(
|
22 |
receptor_pdb: Path,
|
|
|
27 |
start_time = time.time()
|
28 |
# Do inference here
|
29 |
# return an output pdb file with the protein and two chains R and L.
|
30 |
+
receptor = atoms.atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
|
31 |
+
ligand = atoms.atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
|
32 |
+
receptor = atoms.normalize_orientation(receptor)
|
33 |
+
ligand = atoms.normalize_orientation(ligand)
|
34 |
|
35 |
# Number of random poses to generate
|
36 |
M = 50
|
|
|
74 |
# System ID
|
75 |
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name
|
76 |
output_pdb = output_dir / pdb_name
|
77 |
+
atoms.write_pdb(best_pose, output_pdb)
|
78 |
end_time = time.time()
|
79 |
run_time = end_time - start_time
|
80 |
return str(output_pdb), run_time
|
81 |
|
82 |
|
83 |
+
def evaluate(
|
84 |
+
system_id: str,
|
85 |
+
prediction_pdb: Path,
|
86 |
+
) -> tuple[pd.DataFrame, float]:
|
87 |
+
start_time = time.time()
|
88 |
+
system = PinderSystem(system_id)
|
89 |
+
native = system.native.filepath
|
90 |
+
bdq = BiotiteDockQ(native, Path(prediction_pdb), parallel_io=False)
|
91 |
+
metrics = bdq.calculate()
|
92 |
+
metrics = metrics[["system", "LRMS", "iRMS", "Fnat", "DockQ", "CAPRI"]].copy()
|
93 |
+
metrics.rename(columns={"LRMS": "L_rms", "iRMS": "I_rms", "Fnat": "F_nat", "DockQ": "DOCKQ", "CAPRI": "CAPRI_class"}, inplace=True)
|
94 |
+
end_time = time.time()
|
95 |
+
run_time = end_time - start_time
|
96 |
+
pred = Structure(Path(prediction_pdb))
|
97 |
+
nat = Structure(Path(native))
|
98 |
+
pred, _, _ = pred.superimpose(nat)
|
99 |
+
pred.to_pdb(Path(prediction_pdb))
|
100 |
+
return metrics, [str(prediction_pdb), str(native)], run_time
|
101 |
+
|
102 |
+
|
103 |
with gr.Blocks() as app:
|
104 |
+
with gr.Tab("🧬 PINDER inference template"):
|
105 |
+
gr.Markdown("Title, description, and other information about the model")
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)")
|
109 |
+
input_fasta_1 = gr.File(label="Input Protein 1 monomer sequence (FASTA)")
|
110 |
+
with gr.Column():
|
111 |
+
input_protein_2 = gr.File(label="Input Protein 2 monomer (PDB)")
|
112 |
+
input_fasta_2 = gr.File(label="Input Protein 2 monomer sequence (FASTA)")
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
# define any options here
|
117 |
|
118 |
+
# for automated inference the default options are used
|
119 |
+
# slider_option = gr.Slider(0,10, label="Slider Option")
|
120 |
+
# checkbox_option = gr.Checkbox(label="Checkbox Option")
|
121 |
+
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
|
122 |
|
123 |
+
btn = gr.Button("Run Inference")
|
124 |
+
|
125 |
+
gr.Examples(
|
126 |
+
[
|
127 |
+
[
|
128 |
+
"8i5w_R.pdb",
|
129 |
+
"8i5w_R.fasta",
|
130 |
+
"8i5w_L.pdb",
|
131 |
+
"8i5w_L.fasta",
|
132 |
+
],
|
133 |
+
],
|
134 |
+
[input_protein_1, input_fasta_1, input_protein_2, input_fasta_2],
|
135 |
+
)
|
136 |
+
reps = [
|
137 |
+
{
|
138 |
+
"model": 0,
|
139 |
+
"style": "cartoon",
|
140 |
+
"chain": "R",
|
141 |
+
"color": "whiteCarbon",
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"model": 0,
|
145 |
+
"style": "cartoon",
|
146 |
+
"chain": "L",
|
147 |
+
"color": "greenCarbon",
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"model": 0,
|
151 |
+
"chain": "R",
|
152 |
+
"style": "stick",
|
153 |
+
"sidechain": True,
|
154 |
+
"color": "whiteCarbon",
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"model": 0,
|
158 |
+
"chain": "L",
|
159 |
+
"style": "stick",
|
160 |
+
"sidechain": True,
|
161 |
+
"color": "greenCarbon"
|
162 |
+
}
|
163 |
+
]
|
164 |
+
|
165 |
+
out = Molecule3D(reps=reps)
|
166 |
+
run_time = gr.Textbox(label="Runtime")
|
167 |
+
|
168 |
+
btn.click(predict, inputs=[input_protein_1, input_protein_2, input_fasta_1, input_fasta_2], outputs=[out, run_time])
|
169 |
+
with gr.Tab("⚖️ PINDER evaluation template"):
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column():
|
172 |
+
input_system_id = gr.Textbox(label="PINDER system ID")
|
173 |
+
input_prediction_pdb = gr.File(label="Top ranked prediction (PDB with chains R and L)")
|
174 |
+
|
175 |
+
eval_btn = gr.Button("Run Evaluation")
|
176 |
+
gr.Examples(
|
177 |
+
[
|
178 |
+
[
|
179 |
+
"3g9w__A1_Q71LX4--3g9w__D1_P05556",
|
180 |
+
"3g9w_R--3g9w_L.pdb",
|
181 |
+
],
|
182 |
+
],
|
183 |
+
[input_system_id, input_prediction_pdb],
|
184 |
+
)
|
185 |
+
reps = [
|
186 |
+
{
|
187 |
+
"model": 0,
|
188 |
+
"style": "cartoon",
|
189 |
+
"chain": "R",
|
190 |
+
"color": "greenCarbon",
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"model": 0,
|
194 |
+
"style": "cartoon",
|
195 |
+
"chain": "L",
|
196 |
+
"color": "cyanCarbon",
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"model": 1,
|
200 |
+
"style": "cartoon",
|
201 |
+
"chain": "R",
|
202 |
+
"color": "grayCarbon",
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"model": 1,
|
206 |
+
"style": "cartoon",
|
207 |
+
"chain": "L",
|
208 |
+
"color": "blueCarbon",
|
209 |
+
},
|
210 |
+
]
|
211 |
+
|
212 |
+
pred_native = Molecule3D(reps=reps, config={"backgroundColor": "black"})
|
213 |
+
eval_run_time = gr.Textbox(label="Evaluation runtime")
|
214 |
+
metric_table = gr.DataFrame(pd.DataFrame([], columns=EVAL_METRICS),label="Evaluation metrics")
|
215 |
|
216 |
+
eval_btn.click(evaluate, inputs=[input_system_id, input_prediction_pdb], outputs=[metric_table, pred_native, eval_run_time])
|
217 |
|
218 |
app.launch()
|