Spaces:
Sleeping
Sleeping
File size: 6,133 Bytes
f8aaa9d 7c2c622 f8aaa9d 7c2c622 f8aaa9d c43728b f8aaa9d 0f96bc2 f8aaa9d 0425992 f8aaa9d 0f96bc2 830c9fb f8aaa9d c43728b f8aaa9d 001b623 d638712 0425992 f8aaa9d 001b623 f8aaa9d 001b623 0425992 c43728b f8aaa9d d638712 7c2c622 f8aaa9d 7c2c622 0f96bc2 7c2c622 cba459f 7c2c622 cba459f 7c2c622 63595a8 7c2c622 d638712 63595a8 4938676 0425992 7c2c622 0425992 4938676 7c2c622 63595a8 7c2c622 63595a8 7c2c622 d638712 0f96bc2 7c2c622 001b623 7c2c622 001b623 0f96bc2 d638712 0425992 d638712 7c2c622 0425992 7c2c622 f8aaa9d 0425992 63595a8 d638712 0425992 d638712 63595a8 7c2c622 001b623 f8aaa9d 001b623 d638712 f8aaa9d 001b623 f8aaa9d 0f96bc2 03c6357 0f96bc2 3f2c22a 0f96bc2 f8aaa9d 63595a8 f8aaa9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import json
import gradio as gr
import cv2
from google import genai
from google.genai.types import Part
from tenacity import retry, stop_after_attempt, wait_random_exponential
# Retrieve API key from environment variables.
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
# Initialize the Gemini API client via AI Studio.
client = genai.Client(api_key=GOOGLE_API_KEY)
# Use the Gemini 2.0 Flash model.
MODEL_NAME = "gemini-2.0-flash-001"
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
def call_gemini(video_file: str, prompt: str) -> str:
"""
Call the Gemini model with the provided video file and prompt.
The video file is read as bytes and passed with MIME type "video/mp4",
and the prompt is wrapped as a text part.
"""
with open(video_file, "rb") as f:
file_bytes = f.read()
response = client.models.generate_content(
model=MODEL_NAME,
contents=[
Part(file_data=file_bytes, mime_type="video/mp4"),
Part(text=prompt)
]
)
return response.text
def safe_call_gemini(video_file: str, prompt: str) -> str:
"""
Wrapper for call_gemini that catches exceptions and returns a fallback string.
"""
try:
return call_gemini(video_file, prompt)
except Exception as e:
print("Gemini call failed:", e)
return "No summary available."
def hhmmss_to_seconds(time_str: str) -> float:
"""
Convert a HH:MM:SS formatted string into seconds.
"""
parts = time_str.strip().split(":")
parts = [float(p) for p in parts]
if len(parts) == 3:
return parts[0] * 3600 + parts[1] * 60 + parts[2]
elif len(parts) == 2:
return parts[0] * 60 + parts[1]
else:
return parts[0]
def get_key_frames(video_file: str, summary: str, user_query: str) -> list:
"""
Ask Gemini to output key timestamps and descriptions as plain text.
The prompt instructs the model to output one line per event in the format:
HH:MM:SS - description
We then parse these lines and extract the corresponding frames using OpenCV.
Returns a list of tuples: (image_array, caption)
"""
prompt = (
"List the key timestamps in the video and a brief description of the event at that time. "
"Output one line per event in the following format: HH:MM:SS - description. Do not include any extra text."
)
prompt += f" Video Summary: {summary}"
if user_query:
prompt += f" Focus on: {user_query}"
# Use the safe call to get a response or fallback text.
key_frames_response = safe_call_gemini(video_file, prompt)
lines = key_frames_response.strip().split("\n")
key_frames = []
for line in lines:
if " - " in line:
parts = line.split(" - ", 1)
timestamp = parts[0].strip()
description = parts[1].strip()
key_frames.append({"timestamp": timestamp, "description": description})
extracted_frames = []
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
print("Error: Could not open the uploaded video file.")
return extracted_frames
for frame_obj in key_frames:
ts = frame_obj.get("timestamp")
description = frame_obj.get("description", "")
try:
seconds = hhmmss_to_seconds(ts)
except Exception:
continue
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
ret, frame = cap.read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
caption = f"{ts}: {description}"
extracted_frames.append((frame_rgb, caption))
cap.release()
return extracted_frames
def analyze_video(video_file: str, user_query: str) -> (str, list):
"""
Perform video analysis on the uploaded file.
First, call Gemini with a simple prompt to get a brief summary.
Then, call Gemini to list key timestamps and descriptions.
Returns:
- A Markdown report summarizing the video.
- A gallery list of key frames (each as a tuple of (image, caption)).
"""
summary_prompt = "Summarize this video."
if user_query:
summary_prompt += f" Also focus on: {user_query}"
summary = safe_call_gemini(video_file, summary_prompt)
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{summary}\n"
key_frames_gallery = get_key_frames(video_file, summary, user_query)
if not key_frames_gallery:
markdown_report += "\n*No key frames were extracted.*\n"
else:
markdown_report += "\n**Key Frames Extracted:**\n"
for idx, (img, caption) in enumerate(key_frames_gallery, start=1):
markdown_report += f"- **Frame {idx}:** {caption}\n"
return markdown_report, key_frames_gallery
def gradio_interface(video_file, user_query: str) -> (str, list):
"""
Gradio interface function that accepts an uploaded video file and an optional query,
then returns a Markdown report and a gallery of key frame images with captions.
"""
if not video_file:
return "Please upload a valid video file.", []
return analyze_video(video_file, user_query)
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Video(label="Upload Video File"),
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
],
outputs=[
gr.Markdown(label="Security & Surveillance Analysis Report"),
gr.Gallery(label="Extracted Key Frames", columns=2)
],
title="AI Video Analysis and Summariser Agent",
description=(
"This tool uses Google's Gemini 2.0 Flash model via AI Studio to analyze an uploaded video. "
"It returns a brief summary and extracts key frames based on that summary. "
"Provide a video file and, optionally, a query to guide the analysis."
)
)
if __name__ == "__main__":
iface.launch()
|