Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,11 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import tempfile
|
4 |
-
import requests
|
5 |
import gradio as gr
|
6 |
import cv2
|
7 |
from google import genai
|
8 |
from google.genai import types
|
9 |
from google.genai.types import Part
|
10 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
11 |
-
import yt_dlp # Use yt-dlp for robust YouTube downloading
|
12 |
|
13 |
# Retrieve API key from environment variables.
|
14 |
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
@@ -22,15 +19,17 @@ client = genai.Client(api_key=GOOGLE_API_KEY)
|
|
22 |
MODEL_NAME = "gemini-2.0-flash-001"
|
23 |
|
24 |
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
25 |
-
def call_gemini(
|
26 |
"""
|
27 |
-
Call the Gemini model with the provided video
|
28 |
-
The video is
|
29 |
"""
|
|
|
|
|
30 |
response = client.models.generate_content(
|
31 |
model=MODEL_NAME,
|
32 |
contents=[
|
33 |
-
Part
|
34 |
prompt,
|
35 |
],
|
36 |
)
|
@@ -49,42 +48,10 @@ def hhmmss_to_seconds(time_str: str) -> float:
|
|
49 |
else:
|
50 |
return parts[0]
|
51 |
|
52 |
-
def
|
53 |
-
"""
|
54 |
-
Download the video from a URL. If it's a YouTube URL, use yt-dlp;
|
55 |
-
otherwise, use requests for direct links.
|
56 |
-
Returns the local file path.
|
57 |
-
"""
|
58 |
-
local_file = None
|
59 |
-
if "youtube.com" in video_url or "youtu.be" in video_url:
|
60 |
-
ydl_opts = {
|
61 |
-
'format': 'mp4',
|
62 |
-
'outtmpl': '%(id)s.%(ext)s',
|
63 |
-
'noplaylist': True,
|
64 |
-
'quiet': True,
|
65 |
-
}
|
66 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
67 |
-
info = ydl.extract_info(video_url, download=True)
|
68 |
-
local_file = ydl.prepare_filename(info)
|
69 |
-
else:
|
70 |
-
# Assume it's a direct link to a video file.
|
71 |
-
response = requests.get(video_url, stream=True)
|
72 |
-
if response.status_code == 200:
|
73 |
-
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
74 |
-
for chunk in response.iter_content(chunk_size=8192):
|
75 |
-
if chunk:
|
76 |
-
temp_file.write(chunk)
|
77 |
-
temp_file.flush()
|
78 |
-
local_file = temp_file.name
|
79 |
-
temp_file.close()
|
80 |
-
else:
|
81 |
-
raise ValueError("Failed to download video, status code: " + str(response.status_code))
|
82 |
-
return local_file
|
83 |
-
|
84 |
-
def get_key_frames(video_url: str, analysis: str, user_query: str) -> list:
|
85 |
"""
|
86 |
Prompt Gemini to return key frame timestamps (in HH:MM:SS) with descriptions,
|
87 |
-
then extract those frames from the
|
88 |
|
89 |
Returns a list of tuples: (image_array, caption)
|
90 |
"""
|
@@ -99,7 +66,7 @@ def get_key_frames(video_url: str, analysis: str, user_query: str) -> list:
|
|
99 |
prompt += f" Additional focus: {user_query}"
|
100 |
|
101 |
try:
|
102 |
-
key_frames_response = call_gemini(
|
103 |
# Attempt to parse the output as JSON.
|
104 |
key_frames = json.loads(key_frames_response)
|
105 |
if not isinstance(key_frames, list):
|
@@ -108,38 +75,32 @@ def get_key_frames(video_url: str, analysis: str, user_query: str) -> list:
|
|
108 |
key_frames = []
|
109 |
|
110 |
extracted_frames = []
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
caption = f"{ts}: {description}"
|
133 |
-
extracted_frames.append((frame_rgb, caption))
|
134 |
-
cap.release()
|
135 |
-
finally:
|
136 |
-
if local_path and os.path.exists(local_path):
|
137 |
-
os.remove(local_path)
|
138 |
return extracted_frames
|
139 |
|
140 |
-
def analyze_video(
|
141 |
"""
|
142 |
-
Perform iterative, agentic video analysis.
|
143 |
First, refine the video analysis over several iterations.
|
144 |
Then, prompt the model to identify key frames.
|
145 |
|
@@ -170,7 +131,7 @@ def analyze_video(video_url: str, user_query: str) -> (str, list):
|
|
170 |
prompt += f" Remember to focus on: {user_query}"
|
171 |
|
172 |
try:
|
173 |
-
analysis = call_gemini(
|
174 |
except Exception as e:
|
175 |
analysis += f"\n[Error during iteration {i+1}: {e}]"
|
176 |
break
|
@@ -179,7 +140,7 @@ def analyze_video(video_url: str, user_query: str) -> (str, list):
|
|
179 |
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{analysis}\n"
|
180 |
|
181 |
# Get key frames based on the analysis and optional query.
|
182 |
-
key_frames_gallery = get_key_frames(
|
183 |
if not key_frames_gallery:
|
184 |
markdown_report += "\n*No key frames were extracted.*\n"
|
185 |
else:
|
@@ -189,19 +150,19 @@ def analyze_video(video_url: str, user_query: str) -> (str, list):
|
|
189 |
|
190 |
return markdown_report, key_frames_gallery
|
191 |
|
192 |
-
def gradio_interface(
|
193 |
"""
|
194 |
-
Gradio interface function that accepts
|
195 |
then returns a Markdown report and a gallery of key frame images with captions.
|
196 |
"""
|
197 |
-
if not
|
198 |
-
return "Please
|
199 |
-
return analyze_video(
|
200 |
|
201 |
iface = gr.Interface(
|
202 |
fn=gradio_interface,
|
203 |
inputs=[
|
204 |
-
gr.
|
205 |
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
|
206 |
],
|
207 |
outputs=[
|
@@ -211,8 +172,9 @@ iface = gr.Interface(
|
|
211 |
title="AI Video Analysis and Summariser Agent",
|
212 |
description=(
|
213 |
"This agentic video analysis tool uses Google's Gemini 2.0 Flash model via AI Studio "
|
214 |
-
"to iteratively analyze
|
215 |
-
"a query to guide the analysis. The tool returns a detailed
|
|
|
216 |
)
|
217 |
)
|
218 |
|
|
|
1 |
import os
|
2 |
import json
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
from google import genai
|
6 |
from google.genai import types
|
7 |
from google.genai.types import Part
|
8 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
|
|
9 |
|
10 |
# Retrieve API key from environment variables.
|
11 |
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
|
|
19 |
MODEL_NAME = "gemini-2.0-flash-001"
|
20 |
|
21 |
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
22 |
+
def call_gemini(video_file: str, prompt: str) -> str:
|
23 |
"""
|
24 |
+
Call the Gemini model with the provided video file and prompt.
|
25 |
+
The video file is read as bytes and passed with MIME type "video/mp4".
|
26 |
"""
|
27 |
+
with open(video_file, "rb") as f:
|
28 |
+
file_bytes = f.read()
|
29 |
response = client.models.generate_content(
|
30 |
model=MODEL_NAME,
|
31 |
contents=[
|
32 |
+
Part(file_data=file_bytes, mime_type="video/mp4"),
|
33 |
prompt,
|
34 |
],
|
35 |
)
|
|
|
48 |
else:
|
49 |
return parts[0]
|
50 |
|
51 |
+
def get_key_frames(video_file: str, analysis: str, user_query: str) -> list:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
"""
|
53 |
Prompt Gemini to return key frame timestamps (in HH:MM:SS) with descriptions,
|
54 |
+
then extract those frames from the uploaded video file using OpenCV.
|
55 |
|
56 |
Returns a list of tuples: (image_array, caption)
|
57 |
"""
|
|
|
66 |
prompt += f" Additional focus: {user_query}"
|
67 |
|
68 |
try:
|
69 |
+
key_frames_response = call_gemini(video_file, prompt)
|
70 |
# Attempt to parse the output as JSON.
|
71 |
key_frames = json.loads(key_frames_response)
|
72 |
if not isinstance(key_frames, list):
|
|
|
75 |
key_frames = []
|
76 |
|
77 |
extracted_frames = []
|
78 |
+
cap = cv2.VideoCapture(video_file)
|
79 |
+
if not cap.isOpened():
|
80 |
+
print("Error: Could not open the uploaded video file.")
|
81 |
+
return extracted_frames
|
82 |
+
|
83 |
+
for frame_obj in key_frames:
|
84 |
+
ts = frame_obj.get("timestamp")
|
85 |
+
description = frame_obj.get("description", "")
|
86 |
+
try:
|
87 |
+
seconds = hhmmss_to_seconds(ts)
|
88 |
+
except Exception:
|
89 |
+
continue
|
90 |
+
# Set video position (in milliseconds)
|
91 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
|
92 |
+
ret, frame = cap.read()
|
93 |
+
if ret:
|
94 |
+
# Convert BGR to RGB for proper display
|
95 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
96 |
+
caption = f"{ts}: {description}"
|
97 |
+
extracted_frames.append((frame_rgb, caption))
|
98 |
+
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
return extracted_frames
|
100 |
|
101 |
+
def analyze_video(video_file: str, user_query: str) -> (str, list):
|
102 |
"""
|
103 |
+
Perform iterative, agentic video analysis on the uploaded file.
|
104 |
First, refine the video analysis over several iterations.
|
105 |
Then, prompt the model to identify key frames.
|
106 |
|
|
|
131 |
prompt += f" Remember to focus on: {user_query}"
|
132 |
|
133 |
try:
|
134 |
+
analysis = call_gemini(video_file, prompt)
|
135 |
except Exception as e:
|
136 |
analysis += f"\n[Error during iteration {i+1}: {e}]"
|
137 |
break
|
|
|
140 |
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{analysis}\n"
|
141 |
|
142 |
# Get key frames based on the analysis and optional query.
|
143 |
+
key_frames_gallery = get_key_frames(video_file, analysis, user_query)
|
144 |
if not key_frames_gallery:
|
145 |
markdown_report += "\n*No key frames were extracted.*\n"
|
146 |
else:
|
|
|
150 |
|
151 |
return markdown_report, key_frames_gallery
|
152 |
|
153 |
+
def gradio_interface(video_file, user_query: str) -> (str, list):
|
154 |
"""
|
155 |
+
Gradio interface function that accepts an uploaded video file and an optional query,
|
156 |
then returns a Markdown report and a gallery of key frame images with captions.
|
157 |
"""
|
158 |
+
if not video_file:
|
159 |
+
return "Please upload a valid video file.", []
|
160 |
+
return analyze_video(video_file, user_query)
|
161 |
|
162 |
iface = gr.Interface(
|
163 |
fn=gradio_interface,
|
164 |
inputs=[
|
165 |
+
gr.Video(label="Upload Video File", source="upload", type="filepath"),
|
166 |
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
|
167 |
],
|
168 |
outputs=[
|
|
|
172 |
title="AI Video Analysis and Summariser Agent",
|
173 |
description=(
|
174 |
"This agentic video analysis tool uses Google's Gemini 2.0 Flash model via AI Studio "
|
175 |
+
"to iteratively analyze an uploaded video for security and surveillance insights. "
|
176 |
+
"Provide a video file and, optionally, a query to guide the analysis. The tool returns a detailed "
|
177 |
+
"Markdown report along with a gallery of key frame images."
|
178 |
)
|
179 |
)
|
180 |
|