Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import json
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
from google import genai
|
6 |
-
from google.genai.types import Part
|
7 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
8 |
|
9 |
# Retrieve API key from environment variables.
|
@@ -18,11 +18,11 @@ client = genai.Client(api_key=GOOGLE_API_KEY)
|
|
18 |
MODEL_NAME = "gemini-2.0-flash-001"
|
19 |
|
20 |
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
21 |
-
def call_gemini(video_file: str, prompt: str) -> str:
|
22 |
"""
|
23 |
Call the Gemini model with the provided video file and prompt.
|
24 |
-
The video file is read as bytes and passed with MIME type "video/mp4"
|
25 |
-
|
26 |
"""
|
27 |
with open(video_file, "rb") as f:
|
28 |
file_bytes = f.read()
|
@@ -32,6 +32,7 @@ def call_gemini(video_file: str, prompt: str) -> str:
|
|
32 |
Part(file_data=file_bytes, mime_type="video/mp4"),
|
33 |
Part(text=prompt)
|
34 |
],
|
|
|
35 |
)
|
36 |
return response.text
|
37 |
|
@@ -42,9 +43,9 @@ def hhmmss_to_seconds(time_str: str) -> float:
|
|
42 |
parts = time_str.strip().split(":")
|
43 |
parts = [float(p) for p in parts]
|
44 |
if len(parts) == 3:
|
45 |
-
return parts[0]*3600 + parts[1]*60 + parts[2]
|
46 |
elif len(parts) == 2:
|
47 |
-
return parts[0]*60 + parts[1]
|
48 |
else:
|
49 |
return parts[0]
|
50 |
|
@@ -55,18 +56,35 @@ def get_key_frames(video_file: str, analysis: str, user_query: str) -> list:
|
|
55 |
|
56 |
Returns a list of tuples: (image_array, caption)
|
57 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
prompt = (
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"with
|
62 |
-
"this frame is important)."
|
63 |
)
|
64 |
prompt += f" Video Analysis: {analysis}"
|
65 |
if user_query:
|
66 |
prompt += f" Additional focus: {user_query}"
|
67 |
|
68 |
try:
|
69 |
-
key_frames_response = call_gemini(video_file, prompt)
|
70 |
key_frames = json.loads(key_frames_response)
|
71 |
if not isinstance(key_frames, list):
|
72 |
key_frames = []
|
@@ -87,6 +105,7 @@ def get_key_frames(video_file: str, analysis: str, user_query: str) -> list:
|
|
87 |
seconds = hhmmss_to_seconds(ts)
|
88 |
except Exception:
|
89 |
continue
|
|
|
90 |
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
|
91 |
ret, frame = cap.read()
|
92 |
if ret:
|
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
from google import genai
|
6 |
+
from google.genai.types import Part, GenerateContentConfig
|
7 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
8 |
|
9 |
# Retrieve API key from environment variables.
|
|
|
18 |
MODEL_NAME = "gemini-2.0-flash-001"
|
19 |
|
20 |
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
21 |
+
def call_gemini(video_file: str, prompt: str, config: GenerateContentConfig = None) -> str:
|
22 |
"""
|
23 |
Call the Gemini model with the provided video file and prompt.
|
24 |
+
The video file is read as bytes and passed with MIME type "video/mp4".
|
25 |
+
Optionally accepts a config (e.g. response_schema) for structured output.
|
26 |
"""
|
27 |
with open(video_file, "rb") as f:
|
28 |
file_bytes = f.read()
|
|
|
32 |
Part(file_data=file_bytes, mime_type="video/mp4"),
|
33 |
Part(text=prompt)
|
34 |
],
|
35 |
+
config=config
|
36 |
)
|
37 |
return response.text
|
38 |
|
|
|
43 |
parts = time_str.strip().split(":")
|
44 |
parts = [float(p) for p in parts]
|
45 |
if len(parts) == 3:
|
46 |
+
return parts[0] * 3600 + parts[1] * 60 + parts[2]
|
47 |
elif len(parts) == 2:
|
48 |
+
return parts[0] * 60 + parts[1]
|
49 |
else:
|
50 |
return parts[0]
|
51 |
|
|
|
56 |
|
57 |
Returns a list of tuples: (image_array, caption)
|
58 |
"""
|
59 |
+
# Define a response schema for key frames.
|
60 |
+
response_schema = {
|
61 |
+
"type": "ARRAY",
|
62 |
+
"items": {
|
63 |
+
"type": "OBJECT",
|
64 |
+
"properties": {
|
65 |
+
"timestamp": {"type": "string"},
|
66 |
+
"description": {"type": "string"}
|
67 |
+
},
|
68 |
+
"required": ["timestamp", "description"]
|
69 |
+
}
|
70 |
+
}
|
71 |
+
config = GenerateContentConfig(
|
72 |
+
temperature=0.0,
|
73 |
+
max_output_tokens=1024,
|
74 |
+
response_mime_type="application/json",
|
75 |
+
response_schema=response_schema
|
76 |
+
)
|
77 |
prompt = (
|
78 |
+
"From the following video analysis, list key frames with their timestamps (in HH:MM:SS format) "
|
79 |
+
"and a brief description of the important event at that timestamp. "
|
80 |
+
"Return the result as a JSON array of objects with keys 'timestamp' and 'description'."
|
|
|
81 |
)
|
82 |
prompt += f" Video Analysis: {analysis}"
|
83 |
if user_query:
|
84 |
prompt += f" Additional focus: {user_query}"
|
85 |
|
86 |
try:
|
87 |
+
key_frames_response = call_gemini(video_file, prompt, config=config)
|
88 |
key_frames = json.loads(key_frames_response)
|
89 |
if not isinstance(key_frames, list):
|
90 |
key_frames = []
|
|
|
105 |
seconds = hhmmss_to_seconds(ts)
|
106 |
except Exception:
|
107 |
continue
|
108 |
+
# Set video position (in milliseconds)
|
109 |
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
|
110 |
ret, frame = cap.read()
|
111 |
if ret:
|